Telamon Corporation

Dayton, OH
Fresnillo, MX
Skopje, MK
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1.0 - Scope</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2.0 – Normative References</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3.0 – Fundamentals</td>
<td></td>
<td>4-5</td>
</tr>
<tr>
<td>4.0 – Context of Organization</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4.1</td>
<td>Understanding of the organization and its context</td>
<td>6</td>
</tr>
<tr>
<td>4.2</td>
<td>Needs and expectations of interested parties</td>
<td>6</td>
</tr>
<tr>
<td>4.3</td>
<td>Scope of the QMS</td>
<td>6</td>
</tr>
<tr>
<td>4.4</td>
<td>QMS and its processes</td>
<td>6</td>
</tr>
<tr>
<td>5.0 – Leadership</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>5.1</td>
<td>Leadership and commitment</td>
<td>8</td>
</tr>
<tr>
<td>5.2</td>
<td>Policy</td>
<td>8</td>
</tr>
<tr>
<td>5.3</td>
<td>Organizational roles, responsibilities and authorities</td>
<td>8</td>
</tr>
<tr>
<td>6.0 – Planning</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>6.1</td>
<td>Actions to address risks and opportunity</td>
<td>12</td>
</tr>
<tr>
<td>6.2</td>
<td>Quality objectives and planning to achieve them</td>
<td>12</td>
</tr>
<tr>
<td>6.3</td>
<td>Planning of changes</td>
<td>12</td>
</tr>
<tr>
<td>7.0 – Support</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>7.1</td>
<td>Resources</td>
<td>14</td>
</tr>
<tr>
<td>7.2</td>
<td>Competence</td>
<td>14</td>
</tr>
<tr>
<td>7.3</td>
<td>Awareness</td>
<td>14</td>
</tr>
<tr>
<td>7.4</td>
<td>Communication</td>
<td>14</td>
</tr>
<tr>
<td>7.5</td>
<td>Documented information</td>
<td>14</td>
</tr>
<tr>
<td>8.0 – Operation</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>8.6</td>
<td>Release of products and services</td>
<td>21</td>
</tr>
<tr>
<td>8.7</td>
<td>Control of nonconforming outputs</td>
<td>21</td>
</tr>
<tr>
<td>9.0 – Performance evaluation</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>9.1</td>
<td>Monitoring, measurement, analysis and evaluation</td>
<td>38</td>
</tr>
<tr>
<td>9.2</td>
<td>Internal audit</td>
<td>38</td>
</tr>
<tr>
<td>9.3</td>
<td>Management review</td>
<td>38</td>
</tr>
<tr>
<td>10.0 – Improvement</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>10.1</td>
<td>General</td>
<td>43</td>
</tr>
<tr>
<td>10.2</td>
<td>Nonconformity and corrective action</td>
<td>43</td>
</tr>
<tr>
<td>10.3</td>
<td>Continual improvement</td>
<td>43</td>
</tr>
</tbody>
</table>
Foreword

The purpose of this manual is to describe the policies and company-wide control structure of the Quality Program that is used to achieve our corporate mission.

The Telamon Corporation’s Quality Program is based on the requirements of the International Organization for Standardization as defined in the ISO 9001:2015 standard and IATF16949:2016.

Telamon Corporation in this Quality Manual includes the Telamon Industrial Solutions division located in:
- Carmel, IN,

Telamon Industrial Solutions Corporation is referred to in the balance of this manual as “Telamon”, and its Quality Program as Telamon Quality Program. Where applicable, reference may be made to a specific location exclusively, as outlined above.

1. Scope of the Quality Management System

 This quality manual is based upon:
 A. The ANSI/ISO/ASQ Q90001:2015 International Standard and the IATF16949:2016 Quality Management System Requirements for automotive production and relevant service parts organizations. Telamon has made the strategic decision to adopt these management systems which promote the process approach when developing, implementing and improving the effectiveness of a quality management system, to enhance customer satisfaction by meeting customer requirements.

 B. The methodology known as “Plan-Do-Check-Act” as shown in the ISO 9001:2015 standard, and below, can be applied to Telamon’s processes.
 - Plan: Context of organization; Leadership; Planning; Support
 - Do: Operation
 - Check: Perform evaluation
 - Act: Improvement

2. Normative References-The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 9001:2015(E)

Figure 1 — Schematic representation of the elements of a single process

The PDCA cycle can be applied to all processes and to the quality management system as a whole. Figure 2 illustrates how Clauses 4 to 10 can be grouped in relation to the PDCA cycle.

Figure 2 — Representation of the structure of this International Standard in the PDCA cycle
To meet the requirements of ISO 9001:2015 the following applicable elements have been implemented and maintained in this Quality Manual:

4.0 – Context of the Organization
- 4.1 Understanding of the organization and its context
- 4.2 Understanding the needs and expectations of interested parties
- 4.3 Determining the scope of the quality management system
- 4.4 Quality management system and its processes

5.0 - Leadership
- 5.1 Leadership and commitment
- 5.2 Policy
- 5.3 Organizational roles, responsibilities and authorities

6.0 – Planning
- 6.1 Actions to address risks and opportunities
- 6.2 Quality objectives and planning to achieve them
- 6.3 Planning of changes

7.0 – Support
- 7.1 Resources
- 7.2 Competence
- 7.3 Awareness
- 7.4 Communication
- 7.5 Documented information

8.0 – Operation
- 8.1 Operational planning and control
- 8.2 Requirements for products and services
- 8.3 Design and development of products and services
- 8.4 Control of externally provided processes, products and services
- 8.5 Production and service provision
- 8.6 Release of products and services
- 8.7 Control of non-conforming process outputs

9.0 Performance Evaluation
- 9.1 Monitoring, measurement, analysis and evaluation
- 9.2 Internal audit
- 9.3 Management review

10 Improvement
- 10.1 General
- 10.2 Nonconformity and corrective action
- 10.3 Continual improvement

Certification/Registration
Telamon demonstrates conformance to the ISO requirements by successfully completing third-party registration audits by an accredited ISO registrar. For each three-year interval, 100% of Telamon’s entire scope that is registered and all applicable requirements and measurements are assessed, unless an alternative method is implemented. Telamon demonstrates conformance to the ISO9001:2015 requirements by successfully completing third-party registration audits by an accredited ISO9001:2015 registrar.
4. Context of the Organization

4.1 Understanding the organization and its context
Telamon has determined external and internal issues that are relevant to its purpose and its strategic direction and that affect Telamon’s ability to achieve the intended result(s) of its quality management system (QMS).

<table>
<thead>
<tr>
<th>Internal</th>
<th>Requirement</th>
<th>Carmel</th>
<th>Dayton</th>
<th>Fresnillo</th>
<th>Skopje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contracts with Customers’ and Suppliers</td>
<td>Ensure contracts are complied with.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Satisfaction</td>
<td>Meet Customer goals</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Organizational Structure</td>
<td>Structure to meet requirement/goals</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizational Culture</td>
<td>Lean Culture</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Organizational Values</td>
<td>H2S2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External</th>
<th>Requirement</th>
<th>Carmel</th>
<th>Dayton</th>
<th>Fresnillo</th>
<th>Skopje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governmental Regulations</td>
<td>Labor Laws, Governmental Safety</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Market Conditions/ Economic Shifts</td>
<td>Resource Adjustments</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Changes in Technologies</td>
<td>Benchmarking</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competition</td>
<td>Benchmarking</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Telamon monitors and reviews the information about these external and internal issues. Issues include positive and negative factors or conditions for consideration. Understanding the external context is facilitated by considering issues arising from legal, technological, competitive, market, cultural, social, and economic environments, whether international, national, regional or local. Understanding the internal context is facilitated by considering issues related to values, culture, knowledge and performance of the organization. This formal review is performed, at a minimum; annually to ensure relevance for these factors. Records of this review are documented as an addendum to **T-05-F02.A Management Review Action Register**.

Telamon has
a) identified the processes needed for the quality management system and their application throughout Telamon. The high level processes are shown in the flow and tables following clause 10.3 at the end of this manual.
b) determined the sequence and interaction of these processes (see table)
c) determined the criteria and methods needed to ensure that both the operation and control of these processes are effective according to the following Process Map on the next page.
d) ensured the availability of resources and information necessary to support the operation and monitoring of these processes according to Planning: Actions to Address Risks and Opportunities (TIS-P000010A.RA)
e) monitored, measured and analyzed these processes according to Management Review
f) implemented actions necessary to achieve planned results and continual improvement of these processes
Quality Management System Manual
IATF TIS Dayton/Fresnillo/Skopje 21-DEC-18

Telamon Confidential and Proprietary Information
Hard Copies Authorized ONLY for Revisions or Redlines
H2S2 – Honesty, Harmony, Simplicity, Stewardship
4.2 Understanding the Needs and Expectations of Interested Parties

Due to their effect or potential effect on the organization's ability to consistently provide products and services that meet customer and applicable statutory and regulatory requirements, Telamon has determined

a) the interested parties that are relevant to the quality management system are identified as such:

<table>
<thead>
<tr>
<th>Interest Parties</th>
<th>Requirements</th>
<th>Carmel</th>
<th>Dayton</th>
<th>Fresnillo</th>
<th>Skopje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Customer/OEM's/EndUser</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Regulatory Organizations</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Owner/Shareholders</td>
<td>Meet operation goals for OTD, Customer incidents.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

b) the requirements of these interested parties that are relevant to the quality management system as seen, for example, in contracts and master agreements and defined operational/financial goals.

Telamon monitors and reviews the information about these interested parties and their relevant requirements. This may be done by individual departments or at the executive level, and in joint meetings with the parties. For example, Quarterly Business Reviews may be held with clients to review Telamon's performance to expectations. Interested parties matrix form TIS-F0219 for Fresnillo plant will be found in a separated document.

4.3 Determining the Scope of the Quality Management System (QMS)

Telamon has determined the boundaries and applicability of the quality management system to establish its scope

Scope of Work for Telamon Industrial Solutions Wire Harness Division:

The scope of this manual applies to the operations of Telamon Industrial Solutions Group (ISG) at 600 N. Irwin Street, Dayton, OH 45403, including the manufacture and service of our products. Products included in the scope of registration include:

- Wire harnesses and mechanical assemblies

Telamon ISG – Dayton provides support to Telamon ISG – Fresnillo, MX & Telamon ISG – Skopje in the following areas: Sales, Engineering/Process Design, APQP, Purchasing, Management Review, Policy Making, QMS Management. Telamon Corporate (Carmel, IN) provides support to the Dayton facility in the areas of Internal Auditing and Management Review.

The Quality Management System implemented at Telamon ISG, upholds the entirety of the IATF 16949 Standard with the exclusion of product design. As a contract manufacturing organization, Telamon builds product to our customers designed drawings and specifications with no input on product design.

The scope of this manual also applies to the operations of Telamon ISG-Fresnillo, at Circuito Plan De Fresnillo, #3 Parque Industrial Fresnillo, Fresnillo, Zacatecas MX 99059 & Telamon ISG-Skopje, at Str. 8 Indjikovo No. 24, Skopje, MK, including the manufacture of our products. Products included in the scope of registration include

- Wire Harnesses

The QMS implemented at Telamon ISG-Fresnillo & Telamon ISG-Skopje, upholds the entirety of the IATF 16949 Standard, with the exclusion of Product Design. Telamon ISG-Fresnillo & Telamon ISG-Skopje receive support from Telamon ISG – Dayton in the following areas: Sales, Engineering/Process Design, APQP, Purchasing, Management Review, Policy Making, QMS Management. Further support is received from Telamon Corporate (Carmel, IN) in the areas of Internal Auditing and Management Review.
4.3.1

Exclusions: Product Design

As a contract to the Automotive Industry, Telamon does not perform product design. However we use our Customers’ designs to develop our manufacturing process.

Supporting functions:

Telamon Corporate Quality provides support for Internal Auditing and compliance.
Telamon Core Management provides support for Management Review, including resource management and Business Planning.

Telamon has considered the:

a) external and internal issues referenced above in 4.1;

b) the requirements of relevant interested parties referred to in 4.2;

c) the products and services of Telamon

Where a requirement of the ISO Standard within the Telamon scope can be applied, then it has been applied by Telamon. If any cannot be applied, this has not affected Telamon’s ability or responsibility to ensure conformity of products and services.

4.3.2 Customer-Specific Requirements

<table>
<thead>
<tr>
<th>ABC Group</th>
<th>Supplier Quality Manual</th>
<th>Rev</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoliv</td>
<td>ASM</td>
<td>Rev ---</td>
<td>(01-MAR-18)</td>
</tr>
<tr>
<td>Gobar</td>
<td>Quality Requirements</td>
<td>Rev 10</td>
<td>(07-MAY-18)</td>
</tr>
<tr>
<td>Joyson/Takata</td>
<td>SQAM</td>
<td>Rev 006</td>
<td>(20-AUG-18)</td>
</tr>
<tr>
<td>ZF/TRW</td>
<td>GSQM</td>
<td>Rev 2018</td>
<td>---</td>
</tr>
<tr>
<td>Joyson/KSSI</td>
<td>Quality First Manual</td>
<td>Rev 17</td>
<td>(15-JAN-18)</td>
</tr>
<tr>
<td>Johnson Electric</td>
<td>Supplier Handbook</td>
<td>Rev A</td>
<td>(01-SEP-18)</td>
</tr>
<tr>
<td>Hitachi</td>
<td>Supplier Quality Manual</td>
<td>Rev 20</td>
<td>(11-JAN-18)</td>
</tr>
<tr>
<td>Toyoda Gosei</td>
<td>SQAM</td>
<td>Rev ---</td>
<td>(31-AUG-06)</td>
</tr>
<tr>
<td>Inteva</td>
<td>Supplier Manual</td>
<td>Rev ---</td>
<td>(01-MAR-18)</td>
</tr>
</tbody>
</table>

4.4 Quality Management System and its Processes

4.4.1

Telamon has established, implemented, maintains and continually improves its Quality Management System, including the processes needed and their interactions. (see the flow and tables following clause 10.3 at the end of this manual)

Telamon has determined the processes needed for the QMS and their application throughout Telamon’s organization and has determined:

a) Inputs required and the outputs expected from these processes

b) The sequence and interactions of these processes;

c) The criteria, methods, including monitoring, measurements and related performance indicators needed to ensure the effective operation, and control of these processes;

d) The resources needed for these processes and to ensure their availability;

e) The assignment of the responsibilities and authorities for these processes;

f) The risks and opportunities in accordance with the requirements of 6.1, and plan and implement the appropriate actions to address them;

g) The methods for monitoring, measuring, as appropriate, and evaluation of processes and, if needed, the changes to processes to ensure that they achieve intended results;

h) Opportunities for improvement of the processes and the quality management system.
4.4.1.1 Conformance of Products and Processes
Telamon ensures conformance of all products and processes, including service parts and those that are out-sourced, to all applicable customer, statutory, and regulatory requirements (reference Section 8.4.2.2) System Procedure TIS-P000017P. Supplier Selection & Assessment.

4.4.1.2 Product Safety
Telamon has documented within the Order/Contract Review System Procedure (TIS-P000008S); processes for the management of product-safety related products and manufacturing processes, which, where applicable, include but are not limited to:

a) Identification by Telamon of statutory and regulatory product-safety requirements;
b) Customer notification of requirements in item a);
c) Special approvals for design FMEA;
d) Identification of product-safety-related characteristics;
e) Identification and controls of safety-related characteristics of product and at the point of manufacture;
f) Special approval of control plans and process FMEAs;
g) Reaction plans (reference section 9.1.1.1);
h) Defined responsibilities, definition of escalation process and flow of information, including top management, and customer notification;
i) Training identified by Telamon or customer for personnel involved in product-safety related products and associated manufacturing processes;
j) Changes of product or process shall be approved prior to implementation, including evaluation of potential effects on product safety from process and product changes (reference ISO9001, section 8.3.6);
k) Transfer of requirements with regard to product safety throughout the supply chain, including customer-designated sources (reference section 8.4.3.1);
l) Product traceability by manufactured lot (at a minimum) throughout the supply chain (reference section 8.5.2.1);
m) Lessons learned for new product introduction.

NOTE: special approval is an additional approval by the function (typically the customer) that is responsible to approve such documents with safety-related content.

4.4.2
Telamon maintains documented information to the extent necessary to support the operation of processes and retain documented information to the extent necessary to have confidence that the processes are being carried out as planned. See Documented Information TIS-D000001A, for the definition of the controls needed for the identification, storage, protection, retrieval, retention time and disposition of records.

5. Leadership

5.1 Leadership and Commitment
5.1.1 Leadership and commitment for the quality management system
Telamon's top management demonstrates leadership and commitment with respect to the quality management system by:

a) Taking accountability of the effectiveness of the quality management system
b) Ensuring that the quality policy and quality objectives are established for the quality management system and are compatible with the context and strategic direction of the organization;
c) Ensuring that the quality policy is communicated, understood and applied within the organization;
d) Ensuring the integration of the quality management system requirements into Telamon's business processes;
e) Promoting use of the process approach and risk-based thinking;
f) Ensuring that the resources needed for the quality management system are available;
g) Communicating the importance of effective quality management and of conforming to the quality management system requirements;
h) Ensuring that the quality management system achieves its intended results;
i) Engaging, directing and supporting persons to contribute to the effectiveness of the quality management system;
j) Promoting continual improvement;
k) Supporting other relevant management roles to demonstrate their leadership as it applies to their areas of responsibility.

Monthly Business unit meetings are held and actions documented to facilitate improvement and track the operational performance to goals.

NOTE: Reference to business can be interpreted broadly to mean those activities that are core to the purpose of the organization’s existence, whether the organization is public, private, for profit or not-for-profit.

This is done at Executive Committee Meetings and regularly scheduled reviews with the Business Unit Leaders and Corporate Staff Leaders. Reviews may include discussions on financial status, customer feedback, processes, risks, personnel and resource needs.

5.1.1 Corporate Responsibility
Telamon has defined and implemented corporate responsibility policies, including at a minimum anti-bribery policy, and employee code of conduct, and an ethics escalation policy (whistle-blowing policy). This is located in the Telamon Employee Handbook, (Latest version located on HR Sharepoint).

5.1.2 Process Effectiveness and Efficiency
Top management has identified process owners who are responsible for managing the organization's processes and related outputs. Process owners understand their roles and are competent to perform those roles (reference ISO9001, section 7.2).

5.2 Policy

5.2.1 Quality Policy
Telamon's top management has established, reviewed and maintains a quality policy that:

a. Is appropriate to the purpose and context of the organization and supports its strategic direction;
b. Provides a framework for setting and reviewing quality objectives;
c. Includes a commitment to satisfy applicable requirements;
d. Includes a commitment to continual improvement of the quality management system.

5.2.2 Communicating the Quality Policy

The quality policy:

a. Is available and maintained as documented information;
b. Is communicated, understood and applied within all of Telamon;
c. Is available to relevant interested parties, as appropriate.

Telamon’s Quality management system which is described in this manual, has been developed and implemented and is fully supported by Management, and is understood throughout Telamon.
Telamon Corporation Quality Policy

The Quality Policy of Telamon Corporation is to deliver products and services that meet all statutory, regulatory and customer requirements. In implementing this policy, Telamon is committed to respond and meet its customer’s needs, with quality products, services and on time delivery. Telamon’s management is committed to improve the effectiveness of the quality management system continuously, with periodic reviews of Telamon’s quality objectives and service measurements.

Telamon’s Vision

To be a load bearing support
 to our customers
 to our employees
 to our shareholders
 to our community
...across generations

Telamon Mission Statement

Telamon’s Mission is to simplify business for our customers by increasing efficiency and streamlining operations.

Because the quality of our products and services is and will continue to be the key to Telamon’s competitiveness, it is increasingly vital for all of us at Telamon to understand and use our quality management system to do the best job, the first time and every time.

Telamon Corporate Values

We practice:
 Honesty—We build long-term customer relationships based on integrity and trust.
 Harmony—We work with internal teams, suppliers, and customers with the common goal of meeting our customers’ needs.
 Simplicity—We use the latest technology, tools, and training to streamline processes in order to improve our service.
 Stewardship—We deliver for those we untrusted us.

H2S2

Telamon Environmental Impact Awareness Statement

Telamon is committed to maintaining business units and facilities that minimize the environmental impacts including pollution prevention from our operations, products, and services. We are committed to meeting all applicable regulatory requirements and continuously improving our use of energy, consumption of raw materials, and disposal of waste.

Telamon’s goals are to reduce our facility’s carbon footprint, to use environmentally responsible vendors and products, to reduce landfill disposal, and to increase recycling. Our efforts also include reducing the amount of documentation that is printed by our company, investing in enterprise project management systems and workflow capabilities, and reducing our use of electricity.

5.3 Organizational Roles, Responsibilities and Authorities

Telamon’s top management ensures that the responsibilities and authorities for relevant roles are assigned, communicated and understood within the organization.

Telamon’s top management has assigned the responsibility and authority for:
a) Ensuring that the quality management system conforms to the requirements of the ISO Standard;
b) Ensuring that the processes are delivering their intended outputs;
c) Reporting on the performance of the quality management system, on opportunities for improvement, in particular to top management;
d) Ensuring the promotion of customer focus throughout the organization;
e) Ensuring that the integrity of the quality management system is maintained when changes to the quality management system are planned and implemented

The high level Organization Chart is established by the Executive Management Committee and published through a Companywide email. The individual Business Units identify their director reports and employees, and communicate that to their teams. This may be done in an organization chart or a job description. Changes in the high level organization’s structure will be shown in this manual, on the following page.
5.3.1 Organizational roles, responsibilities, and authorities – supplemental
Top management has assigned personnel with the responsibility and authority to ensure that customer requirements are met. These assignments are documented. This includes but is not limited to the selection of special characteristics, setting quality objectives and related training, corrective and preventive actions, process design and development, capability analysis, logistics information, customer scorecards, and customer needs.

5.3.2 Responsibility and authority for product requirements and corrective actions
Top management has ensured that:
 a) All Personnel are responsible for conformity to product requirements and have the authority to stop shipment and stop production to correct quality problems;
 NOTE: due to the process design in some industries, it might not always be possible to stop production immediately. In this case, the affected batch must be contained and shipment to the customer prevented.
 b) The V.P. of Quality, with authority and responsibility for corrective action is promptly informed of product or processes that do not conform and that all potential nonconforming product is identified and contained;
 c) Production operations across all shifts are staffed with personnel in charge of, or delegated responsibility for, ensuring conformity to product requirements.

6. Planning

6.1 Actions to address risks and opportunities (TIS-P000010A)
6.1.1 When planning for the quality management system Telamon considers the issues referred to in 4.1 and the needs and expectations in 4.2 and determines the risks and opportunities that need to be addressed to:
 a) give assurance that the quality management system can achieve its intended result(s);
 b) enhance desirable effects;
 c) prevent, or reduce, undesired effects;
 d) achieve improvement.

6.1.2 Telamon plans:
1. Actions to address these risks and opportunities;
2. How to:
 a) Integrate and implement the actions into its quality management system processes (see 4.4))
 b) Evaluate the effectiveness of these actions.

Actions taken to address risks and opportunities are proportionate to the potential impact on the conformity of products and services. These risks can be identified both in the Strategic Planning or program specific documentation such as Team Feasibility Commitments.

Note 1 Options to address risks can include avoiding risks, taking risks in order to pursue an opportunity, eliminating the risk source, changing the likelihood or consequences, sharing the risk, or retaining risk by informed decision.

Note 2 Opportunities can lead to the adoption of new practices, launching new products, opening new markets, addressing new customers, building partnerships, using new technology and other desirable and viable possibilities to address Telamon’s or our customers’ needs.

6.1.2.1 Risk Analysis
Telamon includes in its risk analysis, at a minimum, lessons learned from product recalls, product audits, field returns and repairs, complaints, scrap, and rework. Risk assessment for product is identified on the Team feasibility/drawing review and addressed through the PFMEA as defined in the APQP process.

6.1.2.2 Preventive Action
Telamon has determined and implemented action(s) to eliminate the causes of potential nonconformities in order to prevent their occurrence. Preventive actions are appropriate to the severity of the potential issues. (See Engineering Process Design Checklist)
Telamon established a process to lessen the impact of negative effects of risk including the following:

- a) Determining potential nonconformities and their causes;
- b) Evaluating the need for action to prevent occurrence of nonconformities;
- c) Determining and implementing action needed;
- d) Documented information of action taken;
- e) Reviewing the effectiveness of the preventive action taken;
- f) Utilizing lessons learned to prevent recurrence in similar processes (reference ISO9001, section 7.1.6)

See Guidelines for PFMEA

6.1.2.3 Contingency Plans
Telamon has:

- a) identified and evaluated internal and external risks to all manufacturing processes and infrastructure equipment essential to maintain production output and to ensure that customer requirements are met;
- b) defined contingency plans according to risk and impact to the customer;
- c) prepared contingency plans for continuity of supply in the event of any of the following: key equipment failures (reference also section 8.5.6.1.1); interruption from externally provided products, processes, and services; recurring natural disasters, fire; utility interruptions; labour shortages; or infrastructure disruptions;
- d) include, as a supplement to the contingency plans, a notification process to the customer and other interested parties for the extent and duration of any situation impacting customer operations;
- e) periodically test the contingency plans for effectiveness;
- f) conduct contingency plan reviews (at a minimum annually) using a multi-disciplinary team including top management, and update as required;
- g) document the contingency plans and retain documented information describing any revisions, including the person who authorized the changes.

The contingency plan includes provision to validate that the manufactured product continues to meet customer specifications after the re-start of production following an emergency in which production was stopped and if the Regular shutdown processes were not followed.

See Shut down Audit results

6.2 Quality objectives and planning to achieve them
6.2.1 Telamon has established quality objectives at relevant functions, levels and processes & maintains documented information regarding the quality objectives.

The objectives are:

- a) Consistent with the quality policy
- b) Measurable
- c) Take into account applicable requirements
- d) Relevant to conformity of products and services and to enhancement of customer satisfaction
- e) Monitored
- f) Communicated
- g) Updated as appropriate

Telamon Quality Objectives are defined below:

- OTD
- Quality incidents
- Scrap
- Downtime
- OLE

Goals and measurements to the goals may be found in the Management Review Action Listing form T-05-F02-A.
6.2.2
When planning how to achieve its quality objectives, Telamon has determined:

a) What will be done
b) What resources will be required
c) Who will be responsible
d) When it will be completed
e) How the results will be evaluated

6.2.2.1 Quality Objectives and Planning to Achieve Them – supplemental

Top Management has ensured that quality objectives to meet customer requirements are defined, established, and maintained for relevant functions, processes, and levels throughout the organization. (See Business Planning and Monthly Staff Meeting results)

The results of Telamon’s review regarding interested parties and their relevant requirements are considered when Telamon established its annual (at a minimum) quality objectives and related performance targets (internal and external)

6.3 Planning of changes

Where Telamon determines the need for change to the quality management system (4.4) the change is carried out in a planned manner.

Telamon has considered:

a) the purpose of the change and their potential consequences
b) the integrity of the quality management system
c) the availability of resources
d) the allocation or reallocation of responsibilities and authorities

7. Support

7.1 Resources

7.1.1 General

Telamon has determined and provided the resources needed for the establishment, implementation, maintenance and continual improvement of the quality management system.

Telamon has considered:

a) the capabilities of, and constraints on, existing internal resources;
b) what needs to be obtained from external providers

7.1.2 People

Telamon has determined and provides the persons necessary for the effective implementation of our quality management system and for the operation and control of our processes.

7.1.3 Infrastructure

Telamon has determined, provides and maintains the infrastructure necessary for the operation of our processes and to achieve conformity of products and services

NOTE: Infrastructure can include:

a) buildings and associated utilities:
b) equipment including hardware and software
c) transportation resources- for supplies only
d) information and communication technology

7.1.3.1 Plant, Facility, and Equipment Planning

Telamon uses a multidisciplinary approach (including risk identification and risk mitigation methods for developing plant, facility and equipment plans. In designing plan layouts, Telamon:

a) optimizes material flow, material handling, and value-added use of floor space including control of nonconforming...
Methods are developed and implemented to evaluate manufacturing feasibility for new product or new operations. Manufacturing feasibility assessments include capacity planning. These methods are applicable for evaluating proposed changes to existing operations.

Telamon maintains process effectiveness, including periodic re-evaluation relative to risk, to incorporate any changes made during process approval, control plan maintenance (refer to section 8.5.1.1), and verification of job set-ups (section 8.5.1.3).

Assessments of manufacturing feasibility and evaluation of capacity planning are inputs to management reviews (section 9.3).

NOTE 1 – includes application of lean manufacturing principles

NOTE 2 – apply to on-site supplier activities, as applicable

7.1.4 Environment for the operation of processes

Telamon has determined, provides and maintains the environment necessary for the operation of our processes and to achieve conformity of products and services.

NOTE A suitable environment for the operation of processes can be a combination of physical factors, such as:

- a) social (e.g. non-discriminatory, calm, non-confrontational);
- b) psychological (e.g. stress-reducing, burn-out prevention, emotionally protective);
- c) physical (temperature, humidity, light, airflow, hygiene, noise)

These factors can differ substantially depending on the products and services provided.

7.1.4.1 Environment for the Operation of Processes – supplemental

Telamon maintains its premises in a state of order, cleanliness, and repair that is consistent with the product and manufacturing process needs.

7.1.5 Monitoring and measuring resources

7.1.5.1 General

See Control of Monitoring and Measurement Devices (TIS-P000027Q)

Where monitoring or measuring is used for evidence of conformity of products and services to specified requirements, Telamon has determined the resources needed to ensure valid and reliable monitoring and measuring results.

Telamon has ensured that the resources provided:

- a) are suitable for the specific type of monitoring and measurement activities being undertaken;
- b) are maintained to ensure their continued fitness for their purpose.

Telamon retains appropriate documented information as evidence of fitness for purpose of monitoring and measurement resources, this information is located and maintained in the Gagepack database. Additional reference documents are located at the point of use in the PM logs.

7.1.5.1.1 Measurement Systems Analysis

Statistical studies are conducted to analyze the variation present in the results of each type of inspection, measurement and test equipment system identified in the control plan. The analytical methods and acceptance criteria used, conforms to those in reference manuals on measurement system analysis. Other analytical methods and acceptance criteria may be used if approved by the customer. (See APQP TIS-P000014Q)

7.1.5.2 Measurement Traceability

When measurement traceability is a requirement, or is considered by Telamon to be an essential part of providing confidence in the validity of measurement results, measuring equipment is:

- a) calibrated or verified, or both, at specified intervals, or prior to use, against measurement standards traceable to international or national measurement standards; when no such standards exist, the basis used for calibration or verification is retained as documented information;
- b) identified in order to determine their status;
- c) safeguarded from adjustments, damage or deterioration that would invalidate the calibration status and
subsequent measurement results.
Telamon determines if the validity of previous measurement results has been adversely affected when measuring equipment is found to be unfit for its intended purpose, and takes appropriate action as necessary.

7.1.5.2.1 Calibration/Verification Records
Telamon has a documented process for managing calibration/verification records. Records of the calibration/verification activity for all gauges and measuring and test equipment (including employee-owned equipment relevant for measuring, customer-owned equipment, or on-site supplier-owned equipment) needed to provide evidence of conformity to internal requirements, legislative and regulatory requirements, and customer-defined requirements are retained. See (TIS-P000027Q)

Telamon ensures that the calibration/verification activities and records include:
- revisions following engineering changes that impact measurement systems,
- any out-of-specification readings as received for calibration/verification,
- an assessment of the risk of the intended use of the product caused by the out-of-specification condition,
- when a piece of inspection measurement and test equipment is found to be out of calibration or defective during its planned verification or calibration or during use, documented information on the validity of the previous measurement results obtained with this piece of inspection measurement and test equipment is retained, including the associated standard's last calibration date and the next due date on the calibration report;
- notification to the customer if suspect product or material has been shipped;
- equipment identification, including the measurement standard against which the equipment is calibrated,
- statements of conformity to specification after calibration/verification;
- verification that the software used for production and process control is as specified;
- records of the calibration and maintenance activities for all gauging (including employee-owned equipment, customer-owned equipment, or on-site supplier-owned equipment);
- production related software verification used for product and process control (including software installed on employee-owned equipment, customer-owned equipment, or on-site supplier-owned equipment).

7.1.5.3 Laboratory Requirements
7.1.5.3.1 Internal Laboratory
Telamon – Dayton & Mexico
Quality Assurance Laboratory Scope
Telamon has the ability to perform the following tests, evaluations, and calibrations in the Quality Assurance Laboratory:
- Dimensional Measurement
- Calibration of Torque Wrenches
- Gage Repeatability and Reproducibility tests (Gage R&R)
- Cleanliness Verification
- Leak Tester verification
- DC Torque Tool Verification
- Thread Gaging

The following equipment is available in the laboratory to perform the tests, evaluations, and calibrations identified above:
- Profilometers - Surface Finish
- Optical Vision System - Dimensional Measurement
- Coordinate Measuring Machines (CMM) - Dimensional measurement, Gage Calibrations, and Gage R&R
- Standard Measuring Instruments (calipers, micrometers, etc...) - Dimensional Measurement.
- Granite Surface Plates - Dimensional Measurement
- Height Stands w/ Indicators - Dimensional Measurement
- Gage Blocks - Dimensional Measurements and Calibration
- Mic Master - Calibration
The following is the list of standards that are followed in performing the tests, evaluations, and calibrations identified above (latest revision are assumed where applicable):

- Surface Finish Measurement - ANSI B46.1
- Dimensional Measurements - ASME Y14.5M – 1994
- Optical Vision System - Manufacturer’s instruction manual
- CMM’s - Manufacturer’s instruction manual
- Standard Measuring Instruments - General Inspection practices
- Mic Master - Manufacturer’s instruction manual and General Inspection practices

The inspections and calibrations listed above have been verified capable to be performed in the laboratory of Telamon as a result of the following:

- The instruments used for inspections and calibrations are either standard equipment that does not require special instruction, or specialized instruction and training has been provided
- The individuals specifying the inspection, tests, and calibrations have used specialized training, past work experience and knowledge in defining those methods
- The individuals performing the inspections, tests, and calibrations have had either specialized training or have had sufficient work experience in performing them
- The methods used in performing the inspections, tests and calibrations have proven effective in maintaining an acceptable level of quality on all outgoing products. No history exists of quality issues arising due to incorrect inspection, tests, or calibration methods being used

7.1.5.3.2 External Laboratory
External/commercial/independent laboratory facilities used for inspection, test or calibration services by the organization shall have a defined laboratory scope that includes the capability to perform the required inspection, test or calibration, and either

- there is evidence that the external laboratory is acceptable to the customer, or
- the laboratory is accredited to ISO/IEC 17025 or national equivalent.

NOTE 1 Such evidence may be demonstrated by customer assessment, or by customer-approved second-party assessment that the laboratory meets the intent of ISO/IEC 17025 or national equivalent. Second-party assessment may be performed by Telamon assessing the laboratory using a customer-approved method of assessment.

When a qualified laboratory is not available for a given piece of equipment, calibration services may be performed by the equipment manufacturer. In such cases, Telamon ensures that the requirements listed in 7.1.5.3.1 have been met. Use of calibration services, other than by qualified (or customer accepted) laboratories, may be subject to government regulatory confirmation, if required.

7.1.6 Organizational knowledge
Telamon has determined the knowledge necessary for the operation of its processes and to achieve conformity of products and services. This knowledge is maintained and made available to the extent necessary. When addressing changing needs and trends, Telamon considers its current knowledge and determines how to acquire or access the necessary additional knowledge.

Note 1 Organizational knowledge is knowledge specific to Telamon. It is generally gained by experience. It is information that is used and shared to achieve Telamon’s objectives.
Note 2 Telamon’s organizational knowledge can be based on:
 a) internal sources (e.g. learning from failures and successful projects, capturing undocumented knowledge and experience; the results of improvements in processes, products and services)
 b) external sources (e.g. standards, academia, conferences, gathering knowledge from customers or external providers)
7.2 Competence
Telamon has:
 a) determined the necessary competence of personnel performing work under its control that affects its performance and the effectiveness of the quality Management System;
 c) ensured that these persons are competent on the basis of appropriate education, training, or experience, where applicable, taken actions to acquire the necessary competence, and evaluated the effectiveness of the actions taken;
 d) retained appropriate documented information as evidence of competence. NOTE Applicable actions can include, for example, the provision of training to, the mentoring of, or the re-assignment of currently employed persons; or the hiring or contracting of competent persons.

7.2.1 Competence – supplemental
Telamon has established and maintains a documented process(es) for identifying training needs including awareness (section 7.3.1) and achieving competence of all personnel performing activities affecting conformity to product and process requirements. Personnel performing specific assigned tasks are qualified, as required, with particular attention to the satisfaction of customer requirements.

7.2.2 Competence – On-The-Job Training
Telamon provides on-the-job training (which includes customer requirements training) for personnel in any new or modified responsibilities affecting conformity to quality requirements, internal requirements, regulatory or legislative requirements; this includes contract or agency personnel. The level of detail required for on-the-job training is commensurate with the level of education the personnel possess and the complexity of the task(s) they are required to perform for their daily work. Persons whose work can affect quality are informed of the consequences of nonconformity to customer requirements.

7.2.3 Internal Auditor Competency
Telamon has a documented process to verify that internal auditors are competent, taking into account any customer specific requirements. For additional guidance on auditor competencies, reference ISO19011. Telamon maintains a list of qualified internal auditors.

Quality management System auditors, manufacturing process auditors, and product auditors are all able to demonstrate the following minimum competencies:
 a) understanding of the automotive process approach for auditing, including risk-based training;
 b) understanding of applicable customer-specific requirements;
 c) understanding of applicable ISO9001 and IATF 16949 requirements related to the scope of the audit;
 d) understanding of applicable core tool requirements related to the scope of the audit;
 e) understanding how to plan, conduct, report, and close our audit findings.

Additionally, manufacturing process auditors are able to demonstrate technical understanding of the relevant manufacturing process(es) to be audited, including process risk analysis (such as PFMEA) and control plan. Product auditors are able to demonstrate competence in understanding product requirements and use of relevant measuring and test equipment to verify product conformity.

Where training is provided to achieve competency, documented information is retained to demonstrate the trainer's competency with the above requirements.

Maintenance of and improvement in internal auditor competence is demonstrated through:
 f) executing a minimum number of audits per year, as defined by Telamon; and
 g) maintaining knowledge of relevant requirements based on internal changes (e.g., process, technology, product technology) and external changes (e.g., ISO9001, IATF 16949, core tools, and customer requirements)

7.2.4 Second-party auditor competency
Telamon demonstrates the competence of the auditors undertaking the second-party audits. Second-party auditors have...
met customer specific requirements for auditor qualification and demonstrate the minimum following core competencies, including understanding of:

a) the automotive process approach to auditing, including risk based thinking;
b) applicable customer and organization specific requirements;
c) applicable ISO9001 and IATF 16949 requirements related to the scope of the audit;
d) applicable manufacturing process(es) to be audited, including PFMEA and control plan;
e) applicable core tool requirements related to the scope of the audit;
f) how to plan, conduct, prepare audit reports, and close out audit findings.

7.3 Awareness
Persons doing work under Telamon’s control are aware of:

a) the quality policy
b) relevant quality objectives
c) their contribution to the effectiveness of the quality management system, including the benefits of improved quality performance
d) the implications of not conforming with the quality management system requirements

7.3.1 Awareness – Supplemental
Telamon maintains documented information that demonstrates that all employees are aware of their impact on product quality and the importance of their activities in achieving, maintaining, and improving quality, including customer requirements and the risks involved for the customer with non-conforming product.

(See Training Matrix)

7.3.2 Employee Motivation and Empowerment
Telamon maintains a documented process(es) to motivate employees to achieve quality objectives, to make continual improvements, and to create an environment that promotes innovation. The process includes the promotion of quality and technological awareness throughout all of TIS.

Telamon has a process to motivate employees to achieve quality objectives, to make continual improvements, and to create an environment to promote innovation. The process includes the promotion of quality and technological awareness throughout the whole industrial manufacturing organization. Employees are made aware of quality and delivery status through a variety of meeting forums and informal communications. Production status, productivity & quality are tracked in each work center. The work centers also have charts where suggestions can be recorded and implementation can be tracked.

Telamon has a process to measure the extent to which its personnel are aware of the relevance and importance of their activities and how they contribute to the achievement of the quality objectives. Quality measurements are posted in the industrial manufacturing area to show production output, quality alerts, OTD, safety and PPM at minimum. Employees also may share in a monetary incentive program.

7.4 Communication
Telamon has determined the internal and external communications relevant to the quality management system including:

a) on what it will communicate
b) when to communicate
c) with whom to communicate
d) how to communicate
e) who communicates

7.5 Documented Information: information required to be controlled and maintained by Telamon and the medium on which it is contained
7.5.1 General
Telamon’s quality management system includes
a) documented information required by the ISO9001:2015 standard
b) documented information determined by Telamon as being necessary for the effectiveness of the quality management system

7.5.1.1 Quality Management System Documentation
Telamon’s quality management system includes this manual, procedures, methods, work instructions and records, which may be in various hard copy and electronic formats. It also includes:
 a) the scope, including details of and justification for any exclusions (see 4.3 above)
 b) documented processes established for the quality management system and reference to them;
 c) Telamon’s processes and their sequence and interactions (inputs and outputs), including type and extent of control of any outsourced processes;
 d) A document indicating where within Telamon’s quality management system our customer-specific requirements are addressed.

7.5.2 Creating and updating
When creating and updating documented information, Telamon ensures appropriate:
 a) identification and description (e.g. title, author, or reference number)
 b) format (e.g. language, software version, graphics) and media (e.g. paper, electronic)
 c) review and approval for suitability and adequacy

7.5.3 Control of documented information
7.5.3.1 Documented information required by the quality management system and by ISO9001:2015 is controlled to ensure:
 a) it is available and suitable for use, where and when it is needed
 b) it is adequately protected (e.g. from loss of confidentiality, improper use, or loss of integrity)

7.5.3.2 For the control of documented information, Telamon has addressed the following activities, as applicable:
 a) distribution, access, retrieval and use
 b) storage and preservation, including preservation of legibility
 c) control of changes (e.g. version control)
 d) retention and disposition

Documented information of external origin determined by Telamon to be necessary for the planning and operation of the quality management system is identified as appropriate, and controlled.

NOTE Access can imply a decision regarding the permission to view the documented information only, or the permission and authority to view and change the documented information

7.5.3.2.2 Engineering Specifications
Telamon has a documented process describing the review, distribution, and implementation of all customer engineering standards/ specifications and related revisions based on customer schedules, as required:

When an engineering standard/ specification change results in a product design change, see 8.3.6. When an engineering standard/ specification change results in a product realization process change, refer to section 8.5.6.1. Telamon retains a record of the date on which each change is implemented in production. Implementation includes updated documents.

Review is completed within 10 working days of receipt of notification of engineering standards/ specifications changes.

NOTE A change in these standards/ specifications may require an updated record of customer production part approval when these specifications are referenced on the design record or if they affect documents of the production part approval process, such as control plan, risk analysis (such as FMEAs), etc.
8 Operation

8.1 Operational planning and control
Telamon plans, implements and controls the processes (see 4.4) needed to meet requirements for the provision of products and services and to implement the actions determined in Clause 6.1, by:

 a) determining requirements for the product and services;
 b) establishing criteria for the processes and for the acceptance of products and services;
 c) determining the resources needed to achieve conformity to product and service requirements;
 d) implementing control of the processes in accordance with the criteria
 e) determining, maintaining and retaining documented information to the extent necessary:
 i. to have confidence that the processes have been carried out as planned;
 ii. to demonstrate conformity of products and services to their requirements

The output of this planning is suitable for Telamon’s method of operations.
Telamon ensures that outsourced processes are controlled in accordance with 8.4.

Where the customer provides no documented statement of requirement, the customer requirements are confirmed by the organization before acceptance by Telamon’s point of contact for that customer -

Telamon controls planned changes and reviews the consequences of unintended changes, taking action to mitigate any adverse effects, as necessary. For example: Where product requirements are changed, Telamon ensures that relevant documented information is amended (such as BOMs, WIs, WOs,) and that relevant personnel are made aware of the changed requirements.

8.1.1 Operational Planning and Control – Supplemental
When planning for product realization, the following topics are included:
 a) customer product requirements and technical specifications;
 b) logistics requirements;
 c) manufacturing feasibility;
 d) project planning (refer to ISO 9001, section 8.3.2)
 e) acceptable criteria

The resources identified in ISO9001, section 8.1.c), refer to the required verification, validation, monitoring, measurement, inspection, and test activities specific to the product and the criteria for product acceptance.

8.1.2 Confidentiality
Telamon ensures the confidentiality of customer-contracted products and projects under development, including related product information. Non Disclosure Agreements are in place for each customer, as evidence.

8.1.C.4 Tools Management
Telamon ensures that internally developed software and/or tools used in the product life cycle are subject to appropriate quality methods (See TIS-P000027Q Control of Monitoring and Measurement Devices, and TIS-P000031Q Measurement of Process Capability.

8.1.C.4 NOTE Examples of tools to be managed include design and development, testing, configuration management, documentation, scripts, customizations, dies, stamps, fixtures, and diagnostic tools, as well as software used to build and test product.

8.2 Determination of requirements for products and services
8.2.1 Customer Communication
Telamon has established processes for Customer Communication which include:
 a) providing information which relates to products and services;
 b) handling inquiries, contracts or order handling, including changes
c) obtaining customer feedback relating to products and services, including customer complaints
d) the handling or treatment of customer property.
e) establishing specific requirements for contingency actions, when relevant. See Emergency Disaster Plan

8.2.1.1 Customer Communication – Supplemental
Written or verbal communication is in English, as agree with Telamon’s customer. Telamon has the ability to communicate necessary information, including data in a customer-specified computer language and format (e.g., computer-aided design data, electronic data interchange).

8.2.2 Determination of requirements related to products and services
When determining the requirements for the products and services to be offered to customers, Telamon has ensured that:

Telamon has ensured that
a) the requirements for products and services are defined, including:
 i. any applicable statutory and regulatory requirements
 ii. those considered necessary by Telamon;
b) that Telamon has the ability to meet the claims for the products and services it offers.

8.2.2.1 Determining the Requirements for Products and Services – Supplemental
These requirements include recycling, environmental impact, and characteristics identified as a result of the organization’s knowledge of the product and manufacturing processes.

8.2.3 Review of requirements related to products and services
8.2.3.1 Telamon ensures that we have the ability to meet the requirements for products and services to be offered to our customer. Telamon conducts a review before committing to supply products and services to a customer, to include:

 a) requirements specified by the customer, including the requirements for delivery and post-delivery activities;
 b) requirements not stated by the customer, but necessary for the customers’ specified or intended use, when known;
 c) requirements specified by Telamon;
 d) statutory and regulatory requirements applicable to the products and services;
 e) contract or order requirements differing from those previously expressed.

 NOTE Requirements can also include those arising from relevant interested parties

This review is conducted prior to Telamon’s commitment to supply products and services to the customer and ensures contract or order requirements differing from those previously defined are resolved. (See TIS-P000008S Order/Contract Review)

Where the customer does not provide a documented statement of their requirements, the customer requirements are confirmed by Telamon before acceptance.

8.2.3.1.1 Review of the Requirements for Products and Services – Supplemental
Telamon retains documented evidence of a customer-authorized waiver for the requirements stated in ISO9001, Section 8.2.3.1, for a formal review.

Telamon obtains a customer concession or deviation permit prior to further processing whenever the product or manufacturing process is different from that which is currently approved, and a record is kept of the expiration date or quantity authorized. Telamon also ensures compliance with the original or superseding specifications and requirements when the authorization expires. Material shipped on an authorization is properly identified on each shipping container. This applies equally to purchased product. Telamon shall agree with any requests from suppliers before submission to the customer.

8.2.3.1.2 Customer-designated Special Characteristics
Telamon conforms to customer requirements for designation, approval documentation and control of special characteristics.
8.2.3.1.3 Organization Manufacturing Feasibility
Telamon utilizes a multidisciplinary approach to conduct an analysis to determine if it is feasible that our processes are capable of consistently producing product that meets all of the engineering and capacity requirements specified by the customer.
Telamon investigates, confirms and documents the manufacturing feasibility of the proposed products in the contract review process, including risk analysis according to, for any product technology new to Telamon and for any changed manufacturing process or product change.
Telamon validates through production runs, benchmarking studies, or other appropriate methods, our ability to make product to specifications at the required rate.

8.2.3.2 –
Telamon retains documented information, as applicable:
 a) on the results of the review
 b) b) on any new requirements for the products and services

8.2.4 Changes to requirements for products and services
Telamon ensures that relevant documented information is amended, and that relevant persons are made aware of the changed requirements, when the requirements for products and services are changed. (See SP -Engineering Change Notice

8.3 Design and development of products and services – Telamon does not design

8.3.1 General
Where the detailed requirements of Telamon’s products and services are not already established or not defined by the customer or by other interested parties, such that they are adequate for subsequent production or service provision, Telamon establishes implements and maintains a design and development process (as it applies to the delivery of our product/ service). The Single Point of Contact at Telamon (may be the Engineer) works directly with the customer contact to establish the processes that are required for Telamon to deliver to the customer.

NOTE 1 Telamon can also apply the requirements given in 8.5 to the development of processes for production and services provision
NOTE 2 For services, design and development planning can address the whole service delivery process. Telamon may therefore choose to consider the requirements of clauses 8.3 and 8.5 together.

8.3.1.1 Design and Development of Products and Service – Supplemental
The requirements of ISO9001, section 8.3.1 apply to product and manufacturing process design and development and focus on error prevention rather than detection.
Telamon does not do design of product, just processes.

8.3.2 Design and development planning – Telamon does not design product.
In determining the stages and controls for design and development of production, Telamon considers:
 a) the nature, duration and complexity of the design and development activities;
 b) requirements that specify particular process stages, including applicable design and development reviews;
 c) the required design and development verification and validation
 d) the responsibilities and authorities involved in the design and development process
 e) the internal and external resource needs for the design and development of products and services;
 f) the need to control interfaces between individuals and parties involved in the design and development process;
 g) the need for involvement of customer and user groups in the design and development process;
 h) the requirements for subsequent provision of product and services;
 i) the level of control expected for the design and development process by customers and other relevant interested parties
 j) the documented information needed to demonstrate that design and development requirements have been met.
8.3.2.1 Design and Development Planning - Supplemental
Telamon ensures that design and development planning includes all affected stakeholders within Telamon and, as appropriate, its supply chain. Examples of areas for using such a multidisciplinary approach include but are not limited to the following:

a) project management (ex. APQP, VDA, RGA)
b) product and manufacturing process design activities (ex. DFM and DFA), such as consideration of the use of alternative designs and manufacturing processes;
c) development and review of product design risk analysis (FMEAs), including actions to reduce potential risks;
d) development and review of manufacturing process risk analysis (ex. FMEAs, process flows, control plans, and standard work instructions).

NOTE A multidisciplinary approach typically includes the organization’s design, manufacturing, engineering, quality, production, purchasing, supplier, maintenance, and other appropriate functions.

8.3.2.2 Product Design Skills
Exclusion

8.3.2.3 Development of Products with Embedded Software
Telamon uses a process for quality assurance for products with internally developed embedded software. A software development assessment methodology is utilized to assess Telamon’s software development process. Using prioritization based on risk and potential impact to the customer, Telamon retains documented information of a software development capability self-assessment.
Telamon includes software development within the scope of our internal audit program (see section 9.2.2.1).

8.3.3 Design and development Inputs (customer owns the design)
Telamon has determined:

a) requirements essential for the specific type of products and services being designed and developed, including, as applicable, functional and performance requirements
b) applicable statutory and regulatory requirements;
c) standards or codes of practice that the organization has committed to implement;
d) internal and external resource needs for the design and development of products and services;
e) the potential consequences of failure due to the nature of the products and services;
f) the level of control expected of the design and development process by customers and other relevant interested parties

Inputs are adequate for design and development purposes, complete, and unambiguous. Conflicts among inputs are resolved.

8.3.3.1 Product Design Input (Customer Owns the Design)
Telamon identifies, documents and reviews product design input requirements as a result of contract review. Product design input requirements include but are not limited to the following:

a) product specifications including but not limited to special characteristics (see section 8.3.3.3);
b) boundary and interface requirements;
c) identification, traceability, and packaging;
d) consideration of design alternatives;
e) assessment of risks with the input requirements and Telamon’s ability to mitigate/manage the risks, including from the feasibility analysis;
f) targets for conformity to product requirements including preservation, reliability, durability, serviceability, health, safety, environmental, development timing, and cost;
g) applicable statutory and regulatory requirements of the customer-identified country of destination, if provided;
h) embedded software requirements.

Telamon has a process to deploy information gained from design projects, competitive product analysis (benchmarking), supplier feedback, internal input, field data, and other relevant sources for current and future projects of a similar nature.
NOTE One approach for considering design alternatives is the use of trade-off curves.

8.3.3.2 Manufacturing Process Design Input
Telamon has identified, documented, and reviewed manufacturing process design input requirements including but not limited to the following:
 a) product design output data including special characteristics;
 b) targets for productivity, process capability, timing, and cost;
 c) manufacturing technology alternatives;
 d) customer requirements, if any;
 e) experience from previous developments;
 f) new materials;
 g) product handling and ergonomic requirements; and
 h) design for manufacturing and design for assembly.

Telamon’s manufacturing process design includes the use of error-proofing methods to a degree appropriate to the magnitude of the problem(s) and commensurate with the risks encountered. See TIS-P000015E Process Design & Development Control and the Team Feasibility Commitment forms.

8.3.3.3 Special Characteristics
Telamon uses a multidisciplinary approach to establish, document, and implement its process(es) to identify special characteristics, including those determined by the customer and the risk analysis performed by Telamon includes the following:
 a) documentation of all special characteristics in the drawings (as required), risk analysis (such as PFMEA), control plans, and standard work/operator instructions; special characteristics are identified with specific markings and are cascaded through each of these documents;
 b) development of control and monitoring strategies for special characteristics of products and production processes;
 c) customer-specified approvals, when required;
 d) compliance with customer-specified definitions and symbols or Telamon’s equivalent symbols or notations, as defined in a symbol conversion table. The symbol conversion table would be submitted to the customer, if required.

8.3.4 Design and development controls (customer owns the design)
The controls applied to the design and development process ensure that:
 a) the results to be achieved by the design and development activities are clearly defined;
 b) design and development reviews are conducted as planned;
 c) verification is conducted to ensure that the resulting products and services are capable of meeting the requirements for the specified application or intended use (when known).

8.3.4.1 Monitoring
Measurements at specified stages during the design and development of products and processes are defined, analysed, and reported with summary results as an input to management review (see section 9.3.2.1)
When required by the customer, measurements of the product and process development activity are reported to the customer at stages specified, or agreed to, by Telamon’s customer.

NOTE When appropriate, these measurements may include quality risks, costs; lead times, critical paths, and other measurements.

8.3.4.2 Design and Development Validation (customer owns the design)
Design and development validation are performed in accordance with customer requirements, including any applicable industry and governmental agency-issued regulatory standards. The timing of design and development validation is planned in alignment with customer-specified timing, as applicable.

Where contractually agreed with the customer, this would include evaluation of the interaction of Telamon’s product, including embedded software, within the system of the final customer’s product.
8.3.4.3 Prototype Program
When required by the customer, Telamon has a prototype program and control plan. Telamon uses, whenever possible, the same suppliers, tooling and manufacturing processes as will be used in production. (See TIS-P000043Q Prototype Quality Planning).

All performance-testing activities are monitored for timely completion and conformity to requirements.

When services are outsourced, Telamon includes the type and extent of control in the scope of its quality management system to ensure that outsourced services conform to requirements (see ISO9001, section 8.4)

8.3.4.4 Product Approval Process
Telamon has established, implemented, and maintains a product and manufacturing approval process conforming to requirements defined by Telamon’s customers.

Telamon obtains documented product approval prior to shipment, if required by Telamon’s customers. Records of such approval is retained.

NOTE Product approval should be subsequent to the verification of the manufacturing process.

8.3.5 Design and Development Outputs - (customer owns the design)
The customer ensures that design and development outputs:

a) Meet the input requirements,
b) Are adequate for the subsequent processes for the provision of products and services,
c) Include or reference monitoring and measuring requirements, as appropriate, and acceptance criteria;
d) Specify the characteristics of the products and services that are essential for their intended purpose

e) And their safe and proper provision

The customer retains the documented information on design and development outputs.

8.3.5.1 Design and Development Outputs – Supplemental – (customer owns the design)
The product design output is expressed in terms that can be verified and validated against design input requirements. The product design output includes but is not limited to the following, as applicable:

a) Design risk analysis (FMEA);
b) Reliability study results;
c) Product special characteristics
d) Results of product design error-proofing, such as DFSS, DFMA, and FTA.
e) Product definition including 3D models, technical data packages, product manufacturing information, and geometric dimensioning & tolerancing (GD&T);
f) Product design review results;
g) Service diagnostic guidelines and repair and serviceability instructions;
h) Service part requirements;
i) Packaging and labeling requirements for shipping.

NOTE Interim design outputs should include any engineering problems being resolved through a trade-off process.

8.3.5.2 Manufacturing Process Design Output
Telamon documents the manufacturing process design output in a manner that enables verification against the manufacturing process design inputs. This documentation is listed on the Preventative Audit Checklist. Telamon verifies the outputs against manufacturing process design input requirements. The manufacturing process design output includes but is not limited to:

a) Specifications and drawings;
b) Special characteristics for product and manufacturing process;
c) Identification of process input variables that impact characteristics;
d) Tooling and equipment for production and control, including capability studies of equipment and process(es)
e) Manufacturing process flow charts/layout, including linkage of product, process, and tooling;
f) Capacity analysis;
g) Manufacturing process FMEA;
h) Maintenance plans and instructions;
i) Control plan (see annex A)
j) Standard work and work instructions;
k) Process approval acceptance criteria;
l) Data for quality, reliability, maintainability, and measurability;
m) Results of error-proofing identification and verification, as appropriate;
n) Methods of rapid detection, feedback, and correction of product/ manufacturing process nonconformities.

Manufacturing process improvement continually focuses upon control and reduction of variation in product characteristics and manufacturing process parameters. Controlled characteristic internally, are documented in the control plan. Continual improvement is implemented once manufacturing processes are capable and stable, or product characteristics are predictable and meet customer requirements.

8.3.6 Design and development changes – (customer owns design)
The organization (the customer) identifies, reviews and controls changes made during, or subsequent to, the design and development of products and services. To the extent necessary to ensure that there is no adverse impact on conformity to requirements.
The customer retains the documented information on:
 a) Design and development changes;
 b) The result of reviews;
 c) The authorization of the changes;
 d) The actions taken to prevent adverse impacts.

8.3.6.1 Design and Development Changes – Supplemental (customer owns design)
Telamon evaluates all design changes after initial product approval, including those proposed by Telamon or its suppliers, for potential impact on fit, form, function, performance, and/or durability. These changes are validated against customer requirements and approved internally, prior to production implementation. If required by the customer, Telamon will obtain documented approval, or a documented waiver, from the customer prior to production implementation.
For products with embedded software, Telamon documents the revision level or software and hardware as part of the change records.

8.4 Control of externally provided processes, products and services – See Supplier Selection & Assessment (TIS-P000017P)
8.4.1 General
Telamon ensures that externally provided processes, products, and services conform to requirements.
Telamon determines the controls to be applied to externally provided processes, products and services when:
 a) Products and services are provided by external providers for incorporation into Telamon’s own products and services;
 b) Products and services are provided directly to the customer(s) by external providers on behalf of Telamon;
 c) A process or part of a process is provided by an external provider as a result of a decision by Telamon
Telamon determines and applies criteria for the evaluation, selection, monitoring of performance, and re-evaluation of external providers, based on their ability to provide processes or products and services in accordance with requirements.
Telamon retains documented information of these activities and any necessary actions arising from the evaluations. See Purchasing (T-07-P08)

8.4.1.1 General – Supplemental
Telamon includes all products and services that affect customer requirements such as sub-assembly, sequencing, sorting, rework, and calibration services in the scope of their definition of externally provided products, processes, and services.
8.4.1.2 Supplier Selection Process – See Supplier Selection & Assessment (TIS-P000017P)
Telamon has a documented supplier selection process. The selection process includes:

a) An assessment of the selected supplier’s risk to product conformity and uninterrupted supply of Telamon’s product to their customer
b) Relevant quality and delivery performance
c) An evaluation of the supplier’s quality management system;
d) Multidisciplinary decision making; and
e) An assessment of software development capabilities, if applicable.

Other supplier selection criteria that is considered includes the following:

a) Volume of automotive business (absolute and as a percentage of total business);
b) Financial stability;
c) Purchased product, material, or service complexity;
d) Required technology (product or process);
e) Adequacy of available resources (e.g., people, infrastructure);
f) Design and development capabilities (including project management);
g) Manufacturing feasibility;
h) Change management process;
i) Business continuity planning (e.g., disaster preparedness, contingency planning);
j) Logistics process;
k) Customer service.

8.4.1.3 Customer directed Sources (also known as ‘Directed-Buy’);
When specified by the customer, Telamon purchases products, materials, or services from customer-directed sources.

All requirements of section 8.4 (except requirements in IATF 16949, section 8.4.1.2) are applicable to Telamon’s control of customer-directed sources unless specific agreements are otherwise defined by the contract between Telamon and its customers.

8.4.2 Type and Extent of Control - Supplier Selection & Assessment (TIS-P000017P)
Telamon has ensured that externally provided processes, products and services do not adversely affect Telamon’s ability to consistently deliver conforming products and services to our customers.

Telamon has:

a) Ensured that externally provided processes remain within the control of our quality management
b) Defined both the controls that we intend to apply to an external provider and those we intend to apply to the resulting input;
c) Telamon has taken into consideration:
 i. The potential impact of the externally provided processes, products and services on Telamon’s ability to consistently meet customer and applicable statutory and regulatory requirements;
 ii. The effectiveness of the controls applied by the external provider;
d) Determined the verification, or other activities, necessary to ensure that the externally provided processes, products and services meet requirements.

8.4.2.1 Type and Extent of Control – Supplemental
Telamon has a documented process within the APQP process to identify outsourced processes and to select the types and extent of controls used to verify conformity of externally provided products, processes, and services to internal (organizations) and external customer requirements. Currently there are no outsourced products or services.

8.4.2.2 Statutory and Regulatory Requirements
Telamon has documented our process to ensure that purchased products, processes, and services conform to the current Applicable statutory and regulatory requirements in the country of receipt, the country of shipment, and the customer identified country of destination, if provided. This is identified and maintain the Quality Plus supplier quality manual for Telamon.
If the customer defines special controls for certain products with statutory and regulatory requirements, Telamon ensures they are implemented and maintained as defined, including at the suppliers.

8.4.2.3 Supplier Quality Management System Development
Telamon requires our suppliers of automotive products and services to develop, implement, and improve a quality management system with the goal of supplier conformity with the most current revision of ISO9001 Technical Specification. Conformity with ISO 9001 is the first step in achieving this goal. Unless otherwise specified by the customer, Telamon will support supplier efforts to attain this goal.

a) Compliance to ISO 9001 through 2nd party audits;
b) Certification to ISO9001 through 3rd party audits;
c) Certification to ISO9001 with compliance to other customer-defined QMS requirements;
d) Certification to ISO9001 with compliance to IATF 16949 through second-party audits;
e) Certification to IATF 16949 through third-party audits.

NOTE (TS): The prioritization of suppliers for development (such as pends upon, for example, the supplier’s quality performance and the importance of the product supplied. Telamon’s customer does not require Telamon’s suppliers to be ISO9001:2008 registered. Therefore, Telamon supports its supplier’s efforts to comply with ISO9001:2008. Monthly supplier evaluation results and suggestions for improvements are discussed with Telamon’s suppliers.

8.4.2.3.1 Automotive product-related software or automotive products with embedded software
Telamon requires their suppliers of automotive product-related software, or automotive products with embedded software, to implement and maintain a process for software quality assurance for their products. A software development assessment methodology is utilized to assess the supplier’s software development process. Using prioritization based on risk and potential impact to the customer, Telamon requires the supplier to retain documented information of a software development capability self-assessment.

8.4.2.4 Supplier Monitoring
According to Supplier Selection & Assessment (TIS-P000017P) & Corrective and Preventive Action (TIS-P000037Q and TIS-P000039Q), Supplier performance is monitored through the following indicators (at minimum) in order to ensure conformity of externally provided products, processes and services:

a) delivered product conformity to requirements;
b) customer disruptions at the receiving plant, including yard holds and stop ships;
c) delivery schedule performance;

If provided by the customer, Telamon also includes, as appropriate, in their supplier monitoring:

d) special status customer notifications related to quality or delivery issues;
e) dealer returns, warranty, field actions, and recalls.

8.4.2.4.1 Second-party Audits
Telamon includes second-party audit process in their supplier management approach. Second-party audits may be used for the following:

a) supplier risk assessment;
b) supplier monitoring;
c) supplier QMS development;
d) Product Audits;
e) Process audits.

Based on risk analysis, including product safety/ regulatory requirements, performance of the supplier, and QMS certification level, at a minimum, Telamon documents the criteria for determining the need, type, frequency, and scope of second-party audits.

Telamon retains records of the second-party audit results.

If the scope of the second-party audit is to assess the supplier’s quality management system, then the approach is consistent with the automotive process approach.

NOTE Guidance may be found in the IATF Auditor Guide and ISO 19011.
8.4.2.5 Supplier Development
Telamon determines the priority, type, extent, and timing of required supplier development actions for its active suppliers. Determination inputs include, at minimum:
 a) Performance issues identified through supplier monitoring (see section 8.4.2.4);
 b) Second-party findings (see section 8.2.4.1);
 c) Third-party quality management system certification status;
 d) Risk analysis.
Telamon implements actions necessary to resolve open (unsatisfactory) performance issues and pursue opportunities for continual improvement.

8.4.3 Information for External Providers

8.4.3.1 Information for External Providers – Supplemental
Telamon passes down all applicable statutory and regulatory requirements and special product and process characteristics to their suppliers and require the suppliers to cascade all applicable requirements down the supply chain to the point of manufacturing. These requirements are address on the purchase orders, accordingly.

8.5 Production and Service Provision

8.5.1 Control of Production and Service Provision
As stated in Order/Contract Review (TIS-P000008S) and Control of Monitoring and Measuring Devices (TIS-P000027Q), Telamon implements controlled conditions for production and service provision, including as applicable:
 a) the availability of documented information that defines:
 i. the characteristics of the products to be produced, the services to be provided, or the activities to be performed;
 ii. The results to be achieved;
 b) the availability and use of suitable monitoring and measuring resources (See Control of Monitoring and Measuring Resources (TC-08-P08) is followed by Telamon to determine the monitoring and measurement to be undertaken and the monitoring and measuring equipment needed to provide evidence of conformity of product to determined requirements
 c) Implementation of monitoring and measurement carried out at appropriate stages to verify that criteria for control of processes or outputs, and acceptance criteria for products and services, have been met;
 d) The use of suitable infrastructure and environment for the operation of the processes;
 e) The appointment of competence persons, including any required qualifications;
 f) The validation, and periodic revalidation, of the ability to achieve planned results of the processes of production and service provision, where the resulting output cannot be verified by subsequent monitoring or measurement;
 g) The implementation of actions to prevent human error;
 h) The implementation of release, delivery and post-delivery activities.
NOTE Suitable infrastructure includes appropriate manufacturing equipment required to ensure product compliance. Monitoring and measuring resources include appropriate monitoring and measuring equipment required to ensure effective control of manufacturing processes.

8.5.1.1 Control Plan
Telamon has developed control plans (see Annex A) at the system, subsystem, component and/or material level for the relevant product supplied, including those for processes producing bulk materials as well as parts. Family control plans for bulk material and similar parts using a common manufacturing process are acceptable.

Telamon has developed a control plan for pre-launch and production that shows linkage and incorporates information from the design risk analysis (if provided by customer), process flow diagram, and manufacturing process risk analysis outputs (such as FMEA).

Telamon provides measurement and conformity data collected during execution of either the pre-launch or production control plans (if required by the customer).

The control plan includes:

a) controls used for the manufacturing process control, including verification of job set-ups;
b) first-off/last-off part validation, as applicable;
c) methods for monitoring of control exercised over special characteristics (see annex A) defined by both the customer and Telamon,
d) customer-required information, if any, and
e) specified reaction plan (see annex A) when nonconforming product is detected, the process becomes statistically unstable or not statistically capable.

Control plans are reviewed and updated as required for any of the following:

f) Telamon determines that it has shipped nonconforming product to the customer;
g) when any change occurs affecting product, manufacturing process, measurement, logistics, supply sources production volume changes, or risk analysis (FMEA) (see Annex A).

Customer approval may be required after review of the control plan.

8.5.1.2 Standardized Work – Operator Instructions and Visual Standards
Issue & Control of Process Monitoring Work Instructions TIS-P000021M) states how Telamon documents work instructions for all employees having responsibilities for the operation of processes that impact product quality. These instructions are legible, accessible for use at the work station, in a language understood by the personnel responsible for following them and are derived from sources such as the quality plan, the control plan and the product realization process.

The standardized work documents include rules for operator safety.

8.5.1.3 Verification of Job Set-ups
Telamon:

a) Verified job set-ups when performed, such as an initial run of a job, material changeover or job change that requires a new set-up
b) Maintains documented information for set-up personnel;
c) Uses statistical methods of verification, where applicable;
d) Performs first-off/last-off part validation, as applicable; where appropriate, first-off parts should be retained for comparison with the last-off parts; where appropriate, last-off parts should be retained for comparison with the first-off parts in subsequent runs;
e) Retains records of process and product approval following set-up and first-off/last-off part validations.

8.5.1.4 Verification After Shutdown
Telamon has defined and implemented the necessary actions to ensure product compliance with requirements after a planned or unplanned production shutdown period. Where Applicable, documented audits for this activity exist.

8.5.1.4.1 Total Productive Maintenance
Telamon has developed, implemented and maintains a documented total productive maintenance system. (TIS-
P000013M

At a minimum, the system includes:

a) Identification of process equipment necessary to product conforming product at the required volume;
b) Availability of replacement parts for the equipment identified in item a);
c) Provision of resource for machine, equipment, and facility maintenance;
d) Packaging and preservation of equipment, tooling, and gauging;
e) Applicable customer-specific requirements;
f) Documented maintenance objectives, for example: OEE (Overall Equipment Effectiveness), MTBF (Mean Time Between Failure), and MTTR (Mean Time To Repair), and Preventive maintenance compliance metrics. Performance to the maintenance objectives shall form an input into management review (see ISO9001, section 9.3);
g) Regular review of maintenance plan and objectives and a documented action plan to address corrective actions where objectives are not achieved;
h) Use of preventive maintenance methods;
i) Use of predictive maintenance methods, as applicable;
j) Periodic overhaul.

8.5.1.5 Management of Production Tooling and Manufacturing, Test, Inspection Tooling and Equipment

Telamon provides resources for tool and gauge design, fabrication, and verification activities for production and service materials and for bulk materials, as applicable.

Telamon has established and implemented a system for production tooling management, whether owned by Telamon or the customer, including:

a) Maintenance and repair facilities and personnel;
b) Storage and recovery;
c) Set-up;
d) Tool-change programs for perishable tools;
e) Tool design modification documentation, including engineering change level of the product;
f) Tool modification and revision to documentation;
g) Tool identification, such as serial or asset number; the status, such as production repair or disposal; ownership; and location.

Telamon verifies that customer-owned tools, manufacturing equipment, and test/inspection equipment are permanently marked in a visible location so that the ownership and application of each item can be determined.

Telamon implements a system to monitor these activities if any work is outsourced.

8.5.1.6 Production Scheduling

Production is scheduled in order to meet customer requirements, such as just-in-time supported by an information system that permits access to production information at key stages of the process and is order driven.

Telamon includes relevant planning information during production scheduling, e.g., customer orders, supplier on-time delivery performance, capacity, shared loading (multi-part station), lead time, inventory level, preventive maintenance, and calibration.

8.5.2 Identification and Traceability

Telamon uses suitable means to identify outputs when it is necessary to ensure the conformity of products and services. Telamon identifies the process output status with respect to monitoring and measurement requirements throughout production and service provision. Where traceability is a requirement, Telamon controls the unique identification of the process outputs, and retains any documented information necessary to maintain traceability.

8.5.2 Note: Inspection and test is not indicated by the location of product in the production flow unless inherently obvious, such as material in an automated production transfer process. Alternatives are permitted if the status is clearly identified, documented, and achieves the designated purpose.
8.5.2.1 Identification and Traceability – Supplemental
The purpose of traceability is to support identification of clear start and stop points for product received by the customer or in the field that may contain quality and/or safety-related nonconformities. Therefore, the organization shall implement identification and traceability processes as described below.

Telamon conducts an analysis of internal, customer, and regulatory traceability requirements for all automotive products, including developing and documenting traceability plans, based on the levels of risk or failure severity for employees, customers, and consumers. These plans define the appropriate traceability systems, processes, and methods by product, process, and manufacturing location that:

a) Enable Telamon to identify nonconforming and/or suspect product;
b) Enable Telamon to segregate nonconforming and/or suspect product;
c) Ensure the ability to meet the customer and/or regulatory response time requirements;
d) Ensure documented information is retained in the format (electronic, hardcopy, archive) that enables Telamon to meet the response time requirements;
e) Ensure serialized identification of individual products, if specified by the customer or regulatory standards;
f) Ensure the identification and traceability requirements are extended to externally provided products with safety/regulatory characteristics.

8.5.3 Property Belonging to Customers or External Providers
Telamon exercises care with property belonging to the customer or external providers (which can include intellectual property) while it is under Telamon’s control or being used by Telamon. Telamon identifies, verifies, protects and safeguards customers’ or external providers’ property provided for use or incorporation into the products and services. If any of the customer or external provider’s property is lost, damage or otherwise found to be unsuitable for use, this shall be reported to the customer or external provider and records maintained.

NOTE – Customer property can include material, components, tools and equipment, customer premises, intellectual property and personal data.

8.5.4 Preservation –
Telamon ensures the preservation of outputs during production and service provision, to the extent necessary to maintain conformity to requirements.

8.5.4.1 Preservation - Supplemental
Preservation includes identification, handling, contamination control, packaging, storage, transmission or transportation, and protection.

Preservation applies to material and components from external and/or internal providers from receipt through processing, including shipment and until delivery to/acceptance by the customer.

In order to detect deterioration, Telamon assesses at appropriate planned intervals the condition of product in stock, the place/type of storage container, and the storage environment.

Telamon uses an inventory management system to optimize inventory turns over time and ensure stock rotation, such as first-in-first-out (FIFO).

Telamon ensures that obsolete product is controlled in a manner similar to that of nonconforming product.

Telamon complies with preservation, packaging, shipping, and labeling requirements as provided by our customers.

8.5.5 Post-delivery Activities
As applicable, Telamon meets requirements for post-delivery activities associated with the products and services. In determining the extent of post-delivery activities that are required, Telamon considers:
a) the potential undesired consequences associated with our products and services;
b) the nature, use and intended lifetime of the products and services;
c) customer feedback;
d) customer requirements;
e) statutory and regulatory requirements.

NOTE Post-delivery activities can include actions under warranty provisions, contractual obligations such as maintenance services, and supplementary services such as recycling or final disposal.

8.5.5.1 Feedback of Information from Service
Corrective Action (TIS-P000037Q) and Preventive Action(TIS-P000039Q) explains the process for communication of information on service concerns to manufacturing, engineering and design activities. Telamon has assigned Points of Contact for its customers.

NOTE 1 This ensures that Telamon has an open line of communication with its customers and is aware of nonconforming products and material that may be identified at the customer location or in the field.

NOTE 2: “Service concerns” include the results of field failure test analysis (see section 10.2.6) where applicable.

8.5.5.2 Service Agreement with Customer (if applicable)
When there is a service agreement with the customer, Telamon:
 a) verifies the relevant service centers comply with applicable requirements;
 b) verifies the effectiveness of any special-purpose tools or measurement equipment, and
 c) ensures that all service personnel are trained in applicable requirements;

8.5.6 Control of Changes –
Telamon reviews and controls changes for production or service provision to the extent necessary to ensure continuing conformity with requirements.
Telamon retains documented information describing the results of the review of changes, the personnel authorizing the change, and any necessary actions arising from the review.

8.5.6.1 Control of Changes – Supplemental
Telamon has a documented process to control and react to changes that impact product realization. The effects of any change, including those changes caused by Telamon, the customer, or any supplier, are assessed.
Telamon:
 a) defines verification and validation activities to ensure compliance with customer requirements;
 b) validates changes before implementation;
 c) documents the evidence of related risk analysis;
 d) retains records of verification and validation.
Changes, including those made at suppliers, require a production trial run for verification of changes (such as changes to part design, manufacturing location, or manufacturing process) to validate the impact of any changes on the manufacturing process.
When required by our customer, Telamon:
 e) notifies the customer of any planned product realization changes after the most recent product approval;
 f) obtains documented approval, prior to implementation of the change;
 g) completes additional verification or identification requirements, such as production trial run and new product validation.

8.5.6.1.1 Temporary Change of Process Controls
Telamon has identified, documented, and maintains a list of the process controls, including inspection, measuring, test, and error-proofing devices, that includes the primary process control and the approved back-up or alternate methods.

Telamon has documented the process that manages the use of alternate control methods. Included in the process, based
on risk analysis (such as FMEA), severity, and the internal approvals to be obtained prior to production implementation of the alternate control method.

Before shipping product that was inspected or tested using the alternate method, if required, Telamon obtains approval from our customer. Telamon maintains and periodically reviews a list of approved alternate process control methods that are referenced in the control plan. Standard work instructions are available for each alternate process control method. Telamon reviews the operation of alternate process controls on a daily basis, at a minimum, to verify implementation of standard work with the goal to return to the standard process as defined by the control plan as soon as possible. Example methods include but are not limited to:

a) daily quality focused audits (e.g., layered process audits, as applicable);

b) daily leadership meetings.

Restart verification is documented for a defined period based on severity and confirmation that all features of the error-proofing device or process are effectively reinstated.

Telamon implements traceability of all product produced while any alternate process control devices or processes are being used (e.g., verification and retention of first piece and last piece from every shift).

8.6 Release of Products and Services –
Telamon implements planned arrangements at appropriate stages to verify that product and service requirements have been met. The release of products and services to the customer does not proceed until the planned arrangements have been satisfactorily completed, unless otherwise approved by a relevant authority and, as applicable, by the customer. Telamon retains documented information on the release of products and services for delivery to the customer, which includes:

a) Evidence of conformity with the acceptance criteria

b) Traceability to the persons authorizing release

8.6.1 Release of Products and Service – Supplemental
Telamon ensures that the planned arrangements to verify that the product and service requirements have been met encompass the control plan and are documented as specified in the control plan (see Annex A).

Telamon ensures that the planned arrangements for initial release of products and services encompass product or service approval.

Telamon ensures that product or service approval is accomplished after changes following initial release, according to ISO9001, Section 8.5.6.

8.6.2 Layout Inspection and Functional Testing
A layout inspection and a functional verification to applicable customer engineering material and performance standards is performed for each product as specified in the control plans. Results are available for customer review.

NOTE 1 Layout inspection is the complete measurement of all product dimensions shown on the design record(s).

NOTE 2 The frequency of layout inspection is determined by the customer.

8.6.3 Appearance Items
If Telamon should manufacture parts designated by the customer as ‘appearance items’ Telamon will provide:

a) Appropriate resources, including lighting, for evaluation;

b) Masters for color, grain, gloss, metallic brilliance, texture, distinctness of image, (DOI), and haptic technology, as appropriate;

c) Verification that personnel making appearance evaluations are competent and qualified to do so.

8.6.4 Verification and Acceptance of Conformity of Externally provided Products and Service
Telamon’s Receiving Inspection & Testing (TIS-P000020Q) outlines the process to assure the quality of purchased
product, utilizing one or more of the following methods:
 a) receipt of, and evaluation of, statistical data provided by the supplier to Telamon Corporation;
 b) receiving inspection and/or testing such as sampling based on performance;
 c) second- or third-party assessments or audits of supplier sites, when coupled with records of acceptable delivered product conformance to requirements;
 d) part evaluation by a designated laboratory;
 e) another method agreed with the customer.

8.6.5 Statutory and Regulatory Conformity
Prior to release of externally provided products into its production flow, Telamon confirms and is able to provide evidence that externally provided processes, products, and services conform to the latest applicable statutory, regulatory, and other requirements in the countries where they are manufactured and in the customer-identified countries of destination, if provided.

8.6.6 Acceptance Criteria
Acceptance criteria is defined by Telamon and, where appropriate or required, approved by the customer. For attribute data sampling, the acceptance level is zero defects (see section 9.1.1.1).

8.7 Control of Nonconforming Outputs
8.7.1 Telamon ensures that process outputs that do not conform to requirements are identified and controlled to prevent its unintended use or delivery. The controls and related responsibilities and authorities for dealing with nonconforming product have been defined in TIS-P000036Q – Control of Non-Conforming Product.

Telamon takes appropriate corrective action based on the nature of the nonconformity and its impact on the conformity of products and services. This applies also to nonconforming products and services detected after delivery of the products or during the provision of services.

As applicable, Telamon deals with nonconforming process outputs, products and services in one or more of the following ways:
 a) correction;
 b) segregation, containment, return or suspension of provision of products and services;
 c) informing the customer;
 d) obtaining authorization for:
 a. use “as-is”
 b. release, continuation or re-provision of the products and services;
 c. acceptance under concession.

When there is a nonconforming process output, products and services are corrected, conformity to the requirements are verified.

8.7.1.1 Customer Authorization for Concession
Telamon obtains a customer concession or deviation permit prior to further processing whenever the product or manufacturing process is different from that which is currently approved, and a record is retained, indicating expiration date or quantity authorized. Telamon obtains customer authorization prior to further processing for ‘use as is’ and rework dispositions of nonconforming product. If sub-components are reused in the manufacturing process, that sub-component reuse is clearly communicated to the customer in the concession or deviation permit. Telamon also ensures compliance with the original or superseding specifications and requirements when the authorization expires. Material shipped on an authorization is properly identified on each shipping container. This applies equally to purchased product. Telamon shall approve any requests from suppliers before submission to the customer.

8.7.1.2 Control of Nonconforming Product – Customer-Specified Process
Telamon complies with applicable customer-specified controls for nonconforming product(s).
8.7.1.3 Control of Suspect Product
Telamon ensured that product with unidentified or suspect status is classified and controlled as nonconforming product. Telamon ensures that all appropriate manufacturing personnel receive training for containment of suspect and nonconforming product.

8.7.1.4 Control of Reworked Product
Telamon utilizes risk analysis such as FMEA methodology to assess risks in the rework process prior to a decision to rework the product. If required by the customer, Telamon will obtain approval from the customer prior to commencing rework of the product. Instructions for disassembly or rework, including re-inspection and traceability requirements, are accessible to and utilized by the appropriate personnel.

Telamon retains documented information on the disposition of reworked product including quantity, disposition date, and applicable traceability information.

8.7.1.5 Control of Repaired Product
Telamon utilizes risk analysis (such as FMEA) methodology to assess risks in the rework process prior to a decision to repair the product. If required by the customer, Telamon will obtain approval from the customer prior to commencing repair to be in accordance with the control plan or other relevant documented information to verify compliance to original specifications. Instructions for disassembly or repair, including re-inspection and traceability requirements, are accessible to and utilized by the appropriate personnel.

Telamon obtains documented customer authorization for concession for the product to be repaired.

Telamon retains documented information on the disposition of reworked product including quantity, disposition date, and applicable traceability information.

8.7.1.6 Customer Notification
Telamon immediately notifies the customer in the event that nonconforming product has been shipped. Initial communication is followed with detailed documentation of the event.

8.7.1.7 Nonconforming Product Disposition
Telamon has a documented process for disposition of nonconforming product not subject to rework or repair. For product not meeting requirements, Telamon verifies that the product to be scrapped is rendered unusable prior to disposal. Telamon does not divert nonconforming product to service or use without prior customer approval. (TIS-P000036Q)

8.7.2 See Control of Non-conforming Outputs
Telamon retains documented information of actions taken on nonconforming process outputs, products and services, including on any concessions obtained and on the person or authority that made the decision regarding dealing with the nonconforming System Procedure, when a nonconforming product or service is corrected it is subject to re-verification to demonstrate conformity to the requirements. The Department Manager or designate of a Production Area or Program will ensure that the products or services are inspected/audited in process. Defects will be documented. The Department Manager or designate will reject the work and segregate physical product in the non-conforming area or request re-work of the product or service. All re-worked items will be fully audited/inspected prior to release. The Department manager or designate will maintain records of the defect, re-work and re-audit/inspection. When nonconforming product or service is detected after delivery or use has started, Telamon shall take action appropriate to the effects, or potential effects, of the nonconformity.
9 Performance Evaluation

9.1. Monitoring, measurement, analysis and evaluation

9.1.1 General

Telamon has determined:

a) what needs to be monitored and measured;
b) the methods for monitoring, measurement, analysis and evaluation, as applicable, to ensure valid results;
c) when the monitoring and measuring are to be performed
 a. Telamon has applied suitable methods for monitoring and, where applicable, measurement of the quality
 management system processes. These methods demonstrate the ability of the processes to achieve
 planned results. When planned results are not achieved, correction and corrective action are taken, as
 appropriate, to ensure conformity of the product. -
d) when the results from monitoring and measurement are analyzed and evaluated.

Telamon ensures that the monitoring and measurement activities are implemented in accordance with the determined
requirements and retain appropriate documented information as evidence of the results. Telamon evaluates the quality
performance and the effectiveness of the quality management system. (See Management Review TIS-P000011A and
Internal Quality Audits TIS-P000033Q)

9.1.1.1 Monitoring and Measurement of Manufacturing Processes

Telamon performs process studies on all new manufacturing (including assembly or sequencing) processes to verify
process capability and to provide additional input for process control, including those for special characteristics.

NOTE – For some manufacturing processes, it may not be possible to demonstrate product compliance through process
capability. For those processes, alternate methods such as batch conformance to specification may be used.

Telamon maintains manufacturing process capability or performance results as specified by the customer's part approval
process requirements. Telamon verifies that the process flow diagram, PFMEA, and control plan are implemented,
including adherence to the following:

a) measurement techniques,
b) sampling plans,
c) acceptance criteria,
d) records of actual measurement values and/or test results for variable data;
e) reaction plans and escalation process when acceptance criteria are not met.

Significant process events, such as tool change or machine repair is recorded and retained as documented information.

Telamon initiates a reaction plan from the control plan and evaluated for impact on compliance to specifications for
characteristics that are either not statistically capable or are unstable. These reaction plans shall include containment of
product and 100% inspection as appropriate. A corrective action plan is then completed by the Telamon, indicating
specific timing and assigned responsibilities to assure that the process becomes stable and statistically capable. The
plans are reviewed with and approved by the customer when so required.

Telamon maintains records of effective dates of process change.

9.1.1.2 Identification of Statistical Tools

Telamon has determined the appropriate use of statistical tools. Telamon verifies that the appropriate statistical tools are
included as part of the advanced product quality planning (or equivalent) process and included in the design risk analysis
(such as PFMEA), and the control plan.

9.1.1.3 Application of Statistical Concepts

Statistical concepts, such as variation, control (stability) process capability, and the consequences of over-adjustment, are
understood and used by employees involved in the collection, analysis, and management of statistical data.

9.1.2 Customer Satisfaction

As one of the measurements of the performance of the quality management system, Telamon monitors customer
perceptions of the degree to which customer requirements have been met. Some of the methods for obtaining and using this information have been determined and are:

- Compilation and Analysis of Telamon delivery performance to the Customer
- Defect Free Measurement
- Trending of CARs due to customer complaints
- Direct communication between the Customer and the PM, QM, or VP of Quality
- Report Cards from the Customer on Telamon's performance
- Kudos from the customer

Repeat business and opportunities to bid on future work with existing customers can confirm their perception of Telamon.

NOTE Information related to customer views can include customer satisfaction or opinions surveys, customer data on delivered products or services, quality, market-share analysis, compliments, warranty claims, and dealer reports.

9.1.2.1 Customer Satisfaction – Supplemental
Customer satisfaction with Telamon is monitored through continual evaluation of internal and external performance indicators to ensure compliance to the product and process specifications and other customer requirements. These are based on objective data and include, but not limited to:

- Delivered part quality performance;
- Customer disruptions;
- Delivery schedule performance (including incidents of premium freight);
- Customer notifications related to quality or delivery issues, including special status.

Telamon monitors the performance of manufacturing processes to demonstrate compliance with customer requirements for product quality and efficiency of the process. This includes review of on-line customer portals and customer scorecards, where provided.

9.1.3 Analysis of Data and Evaluation
As stated in Measurement, Analysis and Improvement System Procedure TIS-P000029Q, Telamon analyzes and evaluates appropriate data and information generated as a result of monitoring and measurement and from other relevant sources.

The output of analysis and evaluation is used to:

- assess and enhance customer satisfaction;
- demonstrate conformity of products and services to requirements;
- ensure conformity and effectiveness of the quality management system;
- demonstrate that planning has been successfully implemented;
- assess the performance of processes;
- characteristics and trends of processes and products including determine the need or opportunities for improvement within the quality management system;
- assess the performance of external provider(s);

The results of analysis and evaluation are used to provide inputs to the Management Review Meetings according to Management Review System Procedure.

9.1.3.1 Prioritization
Trends in quality and operational performance are compared with progress toward objectives and lead to action to support prioritization of action for improving customer satisfaction.

9.2 Internal Audit
9.2.1 Telamon conducts internal audits at planned intervals at least once annually, to determine whether the quality management system

- conforms to:
 1) the requirements of this International Standard
2) the quality management system requirements established by Telamon, and
b) is effectively implemented and maintained.

9.2.2
Telamon’s Internal Audits follow the process-audit approach, with conformance and non-conformances documented on the appropriate Telamon Internal Audit Checklist summary.

a) An audit program has been planned, established, implemented and maintained taking into consideration the frequency, methods, responsibilities, planning requirements and reporting, status and importance of the processes concerned, customer feedback, changes impacting the organization, areas to be audited, as well as the results of previous audits.
b) Telamon defines the audit criteria and scope for each audit;
c) Telamon selects auditors and conducts audits to ensure objectivity and the impartiality of the audit process.
d) Telamon ensures that the results of the audits are reported to relevant management;
e) Telamon takes necessary correction and corrective actions without undue delay;
f) Telamon retains documented information as evidence of the implementation of the audit program and the audit results.

NOTE ISO19011 may be used for guidance.

The manager responsible for the area being audited ensures that actions are taken without undue delay to eliminate detected nonconformities and their causes. Target time for closures is:

- **Major Non-conformances** should be closed as soon as possible, in less than 30 days.
- **Minor Non-conformances** should be closed in less than 60 days

Follow-up activities include the verification of the actions taken and the reporting of verification results by a representative of the Quality Department. The Due Date is a target date for the team and may be extended by the V.P of Quality as appropriate.

9.2.2.1 Internal Audit Program
The responsibilities and requirements for planning and conducting audits, and for reporting results and maintaining records) is defined in Internal Audits System Procedure.

The audit program is prioritized based upon risk, internal and external performance trends, and criticality of the process(es).

Where Telamon is responsible for software development, Telamon includes software development capability assessments in the internal audit program.

The frequency of audits is reviewed and, where appropriate, adjusted based on occurrence of process changes, internal and external nonconformities, and/or customer complaints. The effectiveness of the audit program is reviewed as a part of management review.

9.2.2.2 Quality Management System Audit
Telamon audits the quality management system processes over each three-year calendar period, according to an annual program, using the process approach to verify compliance with the IATF 16949 standard, as well as customer specific quality management system requirements.

9.2.2.3 Manufacturing Process Audit
Telamon audits all manufacturing processes over each three-year calendar period to determine their effectiveness and efficiency using customer-specific required approaches for process audits. Where not defined by the customer, Telamon determines the approach to be used.

Within each individual audit plan, each manufacturing process is audited on all shifts, where it occurs, including the appropriate sampling of the shift handover.
This manufacturing process audit includes an audit of the effective implementation of the process risk analysis (such as PFMEA), control plan, and associated documents.

9.2.2.4 Product Audit
Telamon audits products using customer-specific required approaches at appropriate stages of production and delivery to verify conformity to specified requirements. Where not defined by the customer, Telamon defines the approach to be used.

9.3 Management Review
9.3.1 Management Review
General -
Top management reviews Telamon’s quality management system at planned intervals, at least annually, to ensure its continuing suitability, adequacy and effectiveness. This review includes assessing opportunities for improvement and the need for changes to the quality management system, including the quality policy and quality objectives. Meetings may be held as Departmental Meetings, which provide the forum for discussion of these same topics listed below, as required input. The Management Review Form (T-05-F02A) may be used to document the input and output. These meetings are held frequently for immediate and constant monitoring of activities. Minutes of these meetings will be considered as documentation of Management Review, when the minutes are on the Management Review Form and shared with Top Management. For waste management and simplicity, charting and trending of performance results that are available for viewing on the Telamon Server (such as on Sharepoint) will be referenced but may not be in printed format with the minutes.

The Quality Manager or Designate will provide information about the quality program and take the necessary closed loop actions to ensure continuous compliance to ISO 9000:2015 and IATF 16949 Quality System Standards. Records of the quality system reviews and any resulting corrective actions or verifications of implementation will be documented and retained for at least 3 years.

9.3.1.1 Management Review – Supplemental
Management review is conducted at least annually. The frequency of management review(s) is increased based on risk to compliance with customer requirements resulting from internal or external changes impacting the quality management system and performance-related issues.

9.3.2 Review Input
The management review shall be planned and carried out taking into consideration:
 a. The status of actions from previous Management reviews.
 b. Changes in external and internal issues that are relevant to the quality management system including its strategic direction;
 c. Information on the performance and effectiveness of the QMS, including trends and indicators for:
 a. customer satisfaction and feedback from interested parties,
 b. non-conformities and corrective actions;
 c. monitoring and measurement results;
 d. results of audits;
 e. process performance and conformity of products and services
 f. extent to which quality objectives have been met
 g. performance of external providers,
 d. the effectiveness of actions taken to address risks and opportunities (see clause 6.1);
 e. new potential opportunities for continual improvement,
 f. the adequacy of resources.
Tracking of lessons learned may be shared with other departments through the Quality Module Center of Excellence.
9.3.2.1 Management Review Inputs – Supplemental

Input to management review includes:

a) cost of poor quality (cost of internal and external nonconformances)
b) measures of process effectiveness;
c) measures of process efficiency;
d) product conformance;
e) assessments of manufacturing feasibility made for changes to existing operations and for new facilities or new product (see section 7.1.3.1);
f) customer satisfaction (see ISO9001, section 9.1.2)
g) review of performance against maintenance objectives;
h) warranty performance (where applicable);
i) review of customer scorecards (where applicable);
j) identification of potential field failures identified through risk analysis (such as FMEA);
k) actual field failures and their impact on safety or the environment.

9.3.3 Management Review Outputs

The output from the management review is in Action Register Format and includes any decisions and actions related to:

a. Continual improvement opportunities;
b. Any need for changes to the quality management system
c. Resource needs.

Records of the management reviews are maintained by the V.P. of Quality for a period no less than (1) year.
9.3.3.1 Management Review Outputs - Supplemental

Top management documents and implements an action plan when customer performance targets are not met.

<table>
<thead>
<tr>
<th>IATF Clause</th>
<th>P = Primary responsibility</th>
<th>C = Contributing responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 Context of Organization</td>
<td>P = Primary responsibility</td>
<td>C = Contributing responsibility</td>
</tr>
<tr>
<td>4.1 Understanding of the organization and its context</td>
<td>P P P P</td>
<td>P P P P</td>
</tr>
<tr>
<td>4.2 Needs and expectations of interested parties</td>
<td>P P P C C C C</td>
<td></td>
</tr>
<tr>
<td>4.3 Scope of the QMS</td>
<td>P P P C C C C</td>
<td></td>
</tr>
<tr>
<td>4.4 QMS and its processes</td>
<td>P P P C C C C</td>
<td></td>
</tr>
<tr>
<td>5.0 Leadership</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1 Leadership and commitment</td>
<td>P P P C C C C</td>
<td></td>
</tr>
<tr>
<td>5.2 Policy</td>
<td>P P P P</td>
<td></td>
</tr>
<tr>
<td>5.3 Organizational roles, responsibilities and authorities</td>
<td>P P P P C C C C</td>
<td></td>
</tr>
<tr>
<td>6.0 Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1 Actions to address risks and opportunity</td>
<td>P P P C C</td>
<td></td>
</tr>
<tr>
<td>6.2 Quality objectives and planning to achieve them</td>
<td>C P C P</td>
<td></td>
</tr>
<tr>
<td>6.3 Planning of changes</td>
<td>P P P C C C C</td>
<td></td>
</tr>
</tbody>
</table>
7.0 Support

<table>
<thead>
<tr>
<th>IATF Clause</th>
<th>Description</th>
<th>P = Primary responsibility</th>
<th>C = Contributing responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Resources</td>
<td>P P C C C C</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Competence</td>
<td>C P C C C C</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Awareness</td>
<td>C P C C C C C C C C C C C C</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Communication</td>
<td>C P C C C C C C C C C C C</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Documented information</td>
<td>C C C C C C C C P</td>
<td></td>
</tr>
</tbody>
</table>

8.0 Operation

<table>
<thead>
<tr>
<th>IATF Clause</th>
<th>Description</th>
<th>P = Primary responsibility</th>
<th>C = Contributing responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>Release of products and services</td>
<td>C C C P P</td>
<td>C C C C</td>
</tr>
<tr>
<td>8.7</td>
<td>Control of nonconforming outputs</td>
<td>P C</td>
<td>C C C</td>
</tr>
</tbody>
</table>

9.0 Performance Evaluation

<table>
<thead>
<tr>
<th>IATF Clause</th>
<th>Description</th>
<th>P = Primary responsibility</th>
<th>C = Contributing responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Monitoring, measurement, analysis and evaluation</td>
<td>C P P C</td>
<td>C</td>
</tr>
<tr>
<td>9.2</td>
<td>Internal audit</td>
<td>C P</td>
<td>C C</td>
</tr>
<tr>
<td>9.3</td>
<td>Management review</td>
<td>P P P P C C C C</td>
<td></td>
</tr>
</tbody>
</table>

10.0 Improvement

<table>
<thead>
<tr>
<th>IATF Clause</th>
<th>Description</th>
<th>P = Primary responsibility</th>
<th>C = Contributing responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>General</td>
<td>C C P C C C C C C C C C C</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>Nonconformity and corrective action</td>
<td>C P C P C C</td>
<td></td>
</tr>
</tbody>
</table>

10 Improvement

10.1 General
Telamon determines and selects opportunities for improvement and implements necessary actions to meet customer requirements and enhance customer satisfaction.

This includes, as appropriate:

- a) improving processes to prevent nonconformities;
- b) improving products and services to meet known and predicted requirements;
- c) improving quality management system results

NOTE Improvement can be effected reactively (e.g. corrective action), incrementally (e.g. continual improvement), by step change (e.g. breakthrough), creatively (e.g. innovation) or by re-organization (e.g. transformation).

10.2 Nonconformity and corrective action –

10.2.1 When a nonconformity occurs, including those arising from complaints, Telamon:

- a) reacts to the nonconformity, and as applicable:
 1) takes action to control and correct it;
 2) deals with the consequences;
b) evaluates the need for action to eliminate the cause(s) of the nonconformity, in order that it does not recur or occur elsewhere, by:
 1) reviewing the nonconformity;
 2) determining the causes of the nonconformity;
 3) determining if similar nonconformities exist, or could potentially occur;
 c) implement any action needed;
 d) review the effectiveness of any corrective action taken;
 e) make changes to the quality management system, if necessary.

Corrective actions are appropriate to the effects of the nonconformities encountered.

NOTE 1 In some instances, it can be impossible to eliminate the cause of a nonconformity.

NOTE 2 Corrective action can reduce the likelihood of recurrence to an acceptable level.

Telamon Problem Severity Classification for CARs

Major
- Noncompliance is Customer impacting
- Absence, total breakdown in Telamon process or system, or failure to implement a clause of the standard or regulation, including OSHA regulations
- Lack of training of Management (impacts other employees)
- A number of minor related incidents that when considered together may constitute an unacceptable failure of the quality management system

Minor
- Process deficiency in which an isolated observed incident related to product documentation or process that can be solved with efforts in the area
- Documentation or record noncompliance
- Lack of training of an associated that does not directly impact the customer

10.2.2 Telamon retains documented information as evidence of:
 a) the nature of the nonconformities and any subsequent actions taken;
 b) the results of any corrective actions

10.2.3 Problem Solving
Corrective and Preventive Action System Procedure is Telamon’s defined process for problem solving leading to root cause identification and elimination. It includes:
 a) Defined approaches for various types and scale of problems (e.g., new product development, current manufacturing issues, field failures, audit findings);
 b) Containment, interim actions, and related activities necessary for control of nonconforming outputs (see ISO9001, section 8.7);
 c) Root cause analysis, methodology used, analysis, and results;
 d) Implementation of systemic corrective actions, including consideration of the impact on similar processes and products;
 e) Verification of the effectiveness of implemented corrective actions;
 f) Reviewing and, where necessary, updating the appropriate documented information (e.g., PFMEA, control plan).

If a customer has specific processed, tools, or systems for problem solving, Telamon uses those unless otherwise approved by the customer.

10.2.4 Error-proofing
Telamon uses error-proofing methods in their corrective action process, as stated in TIS-P000037Q. The details of the methods used is documented in the process risk analysis (such as the PFMEA) and test frequencies documented in the control plan.

The process includes the testing of error-proofing devices for failure or simulated failure. Records of the testing are
maintained. Challenge parts, when used, are identified, controlled, verified, and calibrated where feasible. Error-proofing device failures have a reaction plan.

10.2.5 Warranty Management Systems
When Telamon is required to provide warranty for their product(s), Telamon implements a warranty management process. The process includes a method for warranty part analysis, including NTF (no trouble found). When specified by the customer, Telamon implements the required warranty management process.

10.2.6 Customer Complaints and Field Failure Test Analysis
Telamon performs analysis on customer complaints and field failures, including any returned parts, and initiates problem solving and corrective action to prevent recurrence.

Where requested by the customer, this includes analysis of the interaction of embedded software of Telamon’s product within the system of the final customer’s product.

Telamon communicated the results of testing/analysis to the customer and also within Telamon.

10.3 Continual Improvement
Telamon continually improves the suitability, adequacy and effectiveness of the quality management system.

Telamon considers the outputs of analysis and evaluation, and the outputs from management review, to confirm if there are areas of underperformance or opportunities that shall be addressed as part of continual improvement.

Where applicable, Telamon selects and utilizes applicable tools and methodologies for investigation of the causes of underperformance and for supporting continual improvement.

10.3.1 Continual Improvement – Supplemental
Telamon has a documented process for continual improvement. The process includes:
 a) Identification of the methodology used, objectives, measurement, effectiveness, and documented information;
 b) A manufacturing process improvement action plan with emphasis on the reduction of process variation and waste;
 c) Risk analysis (such as FMEA).

NOTE Continual improvement is implemented once manufacturing processes are statistically capable and stable or when product characteristics are predictable and meet customer requirements.
Process Interaction

QMS Automotive / Process Interactions

Customer

- Has the need to subcontract production

- Reviews Risks

- Accepts & Initiates forecast and orders

- Approves to send to customer

Management

- Receives RFQ from customer

- Follows DFU/QP Process T-01-P33 with feasibility study and submission of bid

- APQP Process T-07-P33

- Receives Orders for SPC

Selling, Mark & Ops

- Builds Cell, Ensuring, Maintains

- Release PPAP Reels

- Inspects Parts

- Corrective & Preventive Action per T-08-POB

- Segregates Irregular QC Per T-06-P02

Engineering

- Builds, Inspects Ships

- Orders, Receives, Stores Parts

- Production Planning

- Supplier Evaluations T-07-P09

- ERP (Ops attach)

- Internal Audits T-08-P03

- Management Reviews per T-05-P01

- TS16949 Certification Audits

- AP & Cash Flow

Corporate Support

- Issues & supports: Computers, phones, printers, setup P/A, EDI, maintains security

- Maintains OIML, Doc. Control, Corrective Actions

- Supplier Evaluations T-07-P09

- ERP (Ops attach)

- Internal Audits T-08-P03

- Management Reviews per T-05-P01

- TS16949 Certification Audits

- AP & Cash Flow

Corporate Support by IT, Finance, Quality, Safety, Facility

Matrix of Interactions Here:
The Following Matrix Identifies the associated System Procedures that Support this Manual

<table>
<thead>
<tr>
<th>Procedure Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIS-P00001Q.Rx</td>
<td>QUALITY MANAGEMENT SYSTEM MANUAL DISTRIBUTION & AMENDMENT</td>
</tr>
<tr>
<td>TIS-P00002Q.Rx</td>
<td>DEVELOPMENT OF QUALITY SYSTEM PROCEDURES</td>
</tr>
<tr>
<td>TIS-P00003Q.Rx</td>
<td>PREPARATION & CONTROL OF QUALITY SYSTEM DOCUMENTATION</td>
</tr>
<tr>
<td>TIS-P00004Q.Rx</td>
<td>CONTROL OF RECORDS</td>
</tr>
<tr>
<td>TIS-P00005E.Rx</td>
<td>CONTROL OF DRAWINGS</td>
</tr>
<tr>
<td>TIS-P00006A.Rx</td>
<td>CUSTOMER COMMUNICATION & SATISFACTION</td>
</tr>
<tr>
<td>TIS-P00007S.Rx</td>
<td>QUOTATION DEVELOPMENT</td>
</tr>
<tr>
<td>TIS-P00008S.Rx</td>
<td>ORDER / CONTRACT REVIEW</td>
</tr>
<tr>
<td>TIS-P00009S.Rx</td>
<td>BUSINESS PLANNING, TIS WIRE HARNESS</td>
</tr>
<tr>
<td>TIS-P00010Q.Rx</td>
<td>PLANNING ACTIONS TO ADDRESS RISKS AND OPPORTUNITES</td>
</tr>
<tr>
<td>TIS-P00011A.Rx</td>
<td>MANAGEMENT REVIEW</td>
</tr>
<tr>
<td>TIS-P00012M.Rx</td>
<td>TRAINING ASSESSMENT, DELIVERY & EVALUATION</td>
</tr>
<tr>
<td>TIS-P00013M.Rx</td>
<td>PREVENTIVE MAINTENANCE</td>
</tr>
<tr>
<td>TIS-P00014Q.Rx</td>
<td>ADVANCED PRODUCT QUALITY PLANNING</td>
</tr>
<tr>
<td>TIS-P00015E.Rx</td>
<td>PROCESS DESIGN AND DEVELOPMENT CONTROL</td>
</tr>
<tr>
<td>TIS-P00016A.Rx</td>
<td>ENGINEERING CHANGE REQUEST & NOTICE</td>
</tr>
<tr>
<td>TIS-P00017P.Rx</td>
<td>SUPPLIER SELECTION & ASSESSMENT</td>
</tr>
<tr>
<td>TIS-P00018P.Rx</td>
<td>SUPPLIER CORRECTIVE ACTION</td>
</tr>
<tr>
<td>TIS-P00019P.Rx</td>
<td>PURCHASE ORDER GENERATION & ISSUE</td>
</tr>
<tr>
<td>TIS-P00020Q.Rx</td>
<td>RECEIVING INSPECTION & TESTING</td>
</tr>
<tr>
<td>TIS-P00021M.Rx</td>
<td>ISSUE & CONTROL OF PROCESS MONITORING & MANUFACTURING WORK INSTRUCTIONS</td>
</tr>
<tr>
<td>TIS-P00022T.Rx</td>
<td>PRODUCT IDENTIFICATION & TRACEABILITY</td>
</tr>
<tr>
<td>TIS-P00023T.Rx</td>
<td>VERIFICATION & CONTROL OF CUSTOMER PROPERTY</td>
</tr>
<tr>
<td>TIS-P00024T.Rx</td>
<td>SHIPMENT PREPARATION AND DELIVERY</td>
</tr>
<tr>
<td>TIS-P00025T.Rx</td>
<td>PRODUCT PRESERVATION CONTROL</td>
</tr>
<tr>
<td>TIS-P00026T.Rx</td>
<td>INVENTORY MANAGEMENT</td>
</tr>
<tr>
<td>TIS-P00027Q.Rx</td>
<td>CONTROL OF MONITORING & MEASURING DEVICES</td>
</tr>
<tr>
<td>TIS-P00028Q.Rx</td>
<td>LABORATORY PRODUCT IDENTIFICATION & TESTING</td>
</tr>
<tr>
<td>TIS-P00029Q.Rx</td>
<td>MEASUREMENT, ANALYSIS AND IMPROVEMENT</td>
</tr>
<tr>
<td>TIS-P00030Q.Rx</td>
<td>STATISTICAL PROCESS CONTROL</td>
</tr>
<tr>
<td>TIS-P00031Q.Rx</td>
<td>MEASUREMENT OF PROCESS CAPABILITY</td>
</tr>
<tr>
<td>TIS-P00032Q.Rx</td>
<td>STATISTICAL SAMPLING</td>
</tr>
<tr>
<td>TIS-P00033Q.Rx</td>
<td>INTERNAL AUDITS</td>
</tr>
<tr>
<td>TIS-P00034Q.Rx</td>
<td>IN-PROCESS INSPECTION AND TESTING</td>
</tr>
<tr>
<td>TIS-P00035Q.Rx</td>
<td>FINAL INSPECTION AND TESTING</td>
</tr>
<tr>
<td>TIS-P00036Q.Rx</td>
<td>CONTROL OF NONCONFORMING PRODUCT</td>
</tr>
<tr>
<td>TIS-P00037Q.Rx</td>
<td>CORRECTIVE ACTION</td>
</tr>
<tr>
<td>TIS-P00038Q.Rx</td>
<td>CUSTOMER COMPLAINTS</td>
</tr>
<tr>
<td>TIS-P00039Q.Rx</td>
<td>PREVENTIVE ACTION</td>
</tr>
<tr>
<td>TIS-P00040P.Rx</td>
<td>SUPPLIER SELECTION & ASSESSMENT GUIDELINES</td>
</tr>
<tr>
<td>TIS-P00041M.Rx</td>
<td>AUTOLIV PROTOTYPE BUILD PROCEDURE</td>
</tr>
<tr>
<td>TIS-P00042Q.Rx</td>
<td>FIRST ARTICLE INSPECTION</td>
</tr>
<tr>
<td>TIS-P00043Q.Rx</td>
<td>PROTOTYPE QUALITY PLANNING</td>
</tr>
<tr>
<td>TIS-P00044Q.Rx</td>
<td>CONTAINMENT</td>
</tr>
<tr>
<td>TIS-P00045Q.Rx</td>
<td>CONTROL OF FINISHED PRODUCT</td>
</tr>
<tr>
<td>TIS-P00046A.Rx</td>
<td>END OF PROGRAM PROCEDURE</td>
</tr>
<tr>
<td>TIS-P00047Q.Rx</td>
<td>GUIDELINES FOR PFMEA</td>
</tr>
<tr>
<td>TIS-P00048A.Rx</td>
<td>MOTIVATION AND AWARENESS</td>
</tr>
<tr>
<td>TIS-P00049S.Rx</td>
<td>INVOICE AMENDMENT</td>
</tr>
<tr>
<td>TIS-P00050Q.Rx</td>
<td>PRODUCT SAFETY</td>
</tr>
<tr>
<td>Name: ______________________________</td>
<td>Date: __________________________</td>
</tr>
</tbody>
</table>

APPROVED
By John White at 11:52 am, Dec 21, 2018

Controlled
Document invalid if stamp is black